

A138929


Twice the prime powers A000961.


7



2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 32, 34, 38, 46, 50, 54, 58, 62, 64, 74, 82, 86, 94, 98, 106, 118, 122, 128, 134, 142, 146, 158, 162, 166, 178, 194, 202, 206, 214, 218, 226, 242, 250, 254, 256, 262, 274, 278, 298, 302, 314, 326, 334, 338, 346, 358, 362, 382
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Except for the initial term a(1)=2, indices k such that A020513(k)=Phi[k](1) is prime, where Phi is a cyclotomic polynomial.
This is illustrated by the PARI code, although it is probably more efficient to calculate a(n) as 2*A000961(n).
{ a(n)/2 ; n>1 } are also the indices for which A020500(k)=Phi[k](1) is prime.
A188666(k) = A000961(k+1) for k: a(k) <= k < a(k+1), k > 0;
A188666(a(n)) = A000961(n+1). [Reinhard Zumkeller, Apr 25 2011]


LINKS

Table of n, a(n) for n=1..58.
Index entries for cyclotomic polynomials, values at X


FORMULA

A138929(n) = 2*A000961(n)
A138929 = {2} union { k  Phi[k](1)=A020513(k) is prime } = {2} union { 2k  Phi[k](1)=A020500(k) is prime }


MAPLE

From Peter Luschny, Aug 12 2009: (Start)
a := n > `if`(1>=nops(numtheory[factorset](n)), 2*n, NULL):
seq(a(i), i=1..192); (End)


MATHEMATICA

Select[ Range[3, 1000], PrimeQ[ Cyclotomic[#, 1]] &] (* Robert G. Wilson v, Mar 25 2012 *)


PROG

(PARI) print1(2); for( i=1, 999, isprime( polcyclo(i, 1)) & print1(", ", i)) /* use ...subst(polcyclo(i), x, 2)... in PARI < 2.4.2. It should be more efficient to calculate a(n) as 2*A000961(n) ! */


CROSSREFS

Cf. A000961, A020513, A138920A138940. A230078 (complement).
Sequence in context: A022292 A225241 A087370 * A180081 A242418 A191146
Adjacent sequences: A138926 A138927 A138928 * A138930 A138931 A138932


KEYWORD

nonn


AUTHOR

M. F. Hasler, Apr 04 2008


STATUS

approved



