The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138860 E.g.f. satisfies: A(x) = exp( x*(A(x) + A(x)^2)/2 ). 5
 1, 1, 4, 31, 364, 5766, 115300, 2788724, 79197040, 2583928360, 95256535936, 3916137470664, 177651980724160, 8815348234689920, 474993826614917632, 27619367979975064576, 1723821221240101984000, 114948301218300412117632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The related sequence A007889 enumerates the number of intransitive (or alternating) trees. a(n+1) is the number of incomplete ternary trees on n labeled vertices in which each left child has a larger label than its parent and each middle child has a smaller label than its parent. - Brian Drake, Jul 28 2008 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..363 FORMULA a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k+1)^(n-1) - Vladeta Jovovic, Mar 31 2008. E.g.f. satisfies: A( 2*x/( exp(x) + exp(2*x) ) ) = exp(x). E.g.f.: A(x) = inverse function of 2*log(x)/(x + x^2). E.g.f.: A(x) = exp( Series_Reversion[ 2*x/(exp(x) + exp(2*x)) ] ). E.g.f.: A(x) = G(x/2) where G(x) = e.g.f. of A138764. More generally, if A(x) = Sum_{n>=0} a(n)*x^n/n! = exp( x*[A(x) + A(x)^m]/2 ) then a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k+1)^(n-1) and if B(x) = Sum_{n>=0} b(n)*x^n/n! = log(A(x)) then b(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k)^(n-1). - Paul D. Hanna and Vladeta Jovovic, Apr 02 2008 Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then . a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(n+k+p)^(n-1). Given e.g.f. A(x), let B(x) = e.g.f. of A007889, then . A(x) = B(x*A(x)) = (1/x)*Series_Reversion(x/B(x)) and . B(x) = A(x/B(x)) = x/Series_Reversion(x*A(x)). a(n) ~ n^(n-1)*(1+r)^n*r^(n+1)/(sqrt(1+3*r)*(1-r)^(2*n+1)*exp(n)*2^n), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - Vaclav Kotesovec, Jun 15 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 4*x^2/2! + 31*x^3/3! + 364*x^4/4! + 5766*x^5/5! + ... MATHEMATICA Table[1/2^n * Sum[Binomial[n, k]*(n+k+1)^(n-1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2013 *) PROG (PARI) a(n)=(1/2^n)*sum(k=0, n, binomial(n, k)*(n+k+1)^(n-1)) (PARI) /* Series Reversion: */ a(n)=local(X=x+x*O(x^n)); n!*polcoeff(exp(serreverse(2*x/(exp(X)+exp(2*X)) )), n) (PARI) /* Coefficients of A(x)^p are given by: */ {a(n, p=1)=(1/2^n)*sum(k=0, n, binomial(n, k)*p*(n+k+p)^(n-1))} CROSSREFS Cf. A007889, A088789, A058014, A036778, A138903. Cf. A138764. Sequence in context: A322626 A000314 A128709 * A266757 A198865 A145087 Adjacent sequences:  A138857 A138858 A138859 * A138861 A138862 A138863 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 01 2008, Apr 02 2008, Apr 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:58 EST 2020. Contains 338941 sequences. (Running on oeis4.)