login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138860 E.g.f. satisfies: A(x) = exp( x*(A(x) + A(x)^2)/2 ). 5
1, 1, 4, 31, 364, 5766, 115300, 2788724, 79197040, 2583928360, 95256535936, 3916137470664, 177651980724160, 8815348234689920, 474993826614917632, 27619367979975064576, 1723821221240101984000, 114948301218300412117632 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The related sequence A007889 enumerates the number of intransitive (or alternating) trees.

a(n+1) is the number of incomplete ternary trees on n labeled vertices in which each left child has a larger label than its parent and each middle child has a smaller label than its parent. - Brian Drake, Jul 28 2008

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..363

FORMULA

a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+k+1)^(n-1) - Vladeta Jovovic, Mar 31 2008.

E.g.f. satisfies: A( 2*x/( exp(x) + exp(2*x) ) ) = exp(x).

E.g.f.: A(x) = inverse function of 2*log(x)/(x + x^2).

E.g.f.: A(x) = exp( Series_Reversion[ 2*x/(exp(x) + exp(2*x)) ] ).

E.g.f.: A(x) = G(x/2) where G(x) = e.g.f. of A138764.

More generally, if A(x) = Sum_{n>=0} a(n)*x^n/n! = exp( x*[A(x) + A(x)^m]/2 ) then a(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k+1)^(n-1) and if B(x) = Sum_{n>=0} b(n)*x^n/n! = log(A(x)) then b(n) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*(n+(m-1)*k)^(n-1). - Paul D. Hanna and Vladeta Jovovic, Apr 02 2008

Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then

. a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(n+k+p)^(n-1).

Given e.g.f. A(x), let B(x) = e.g.f. of A007889, then

. A(x) = B(x*A(x)) = (1/x)*Series_Reversion(x/B(x)) and

. B(x) = A(x/B(x)) = x/Series_Reversion(x*A(x)).

a(n) ~ n^(n-1)*(1+r)^n*r^(n+1)/(sqrt(1+3*r)*(1-r)^(2*n+1)*exp(n)*2^n), where r = 0.6472709258412625... is the root of the equation (r/(1-r))^(1+r) = e. - Vaclav Kotesovec, Jun 15 2013

EXAMPLE

E.g.f.: A(x) = 1 + x + 4*x^2/2! + 31*x^3/3! + 364*x^4/4! + 5766*x^5/5! + ...

MATHEMATICA

Table[1/2^n * Sum[Binomial[n, k]*(n+k+1)^(n-1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2013 *)

PROG

(PARI) a(n)=(1/2^n)*sum(k=0, n, binomial(n, k)*(n+k+1)^(n-1))

(PARI) /* Series Reversion: */

a(n)=local(X=x+x*O(x^n)); n!*polcoeff(exp(serreverse(2*x/(exp(X)+exp(2*X)) )), n)

(PARI) /* Coefficients of A(x)^p are given by: */

{a(n, p=1)=(1/2^n)*sum(k=0, n, binomial(n, k)*p*(n+k+p)^(n-1))}

CROSSREFS

Cf. A007889, A088789, A058014, A036778, A138903.

Cf. A138764.

Sequence in context: A322626 A000314 A128709 * A266757 A198865 A145087

Adjacent sequences:  A138857 A138858 A138859 * A138861 A138862 A138863

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 01 2008, Apr 02 2008, Apr 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 21:58 EST 2020. Contains 338941 sequences. (Running on oeis4.)