

A138798


Values of j corresponding to least possible k>0 with T(k)T(j)=n, where T(i)>0 are the triangular numbers A000217.


3



1, 2, 3, 1, 5, 2, 7, 1, 9, 4, 2, 5, 1, 3, 15, 7, 2, 8, 1, 5, 3, 10, 6, 2, 4, 1, 27, 13, 3, 14, 31, 2, 6, 1, 10, 17, 7, 3, 5, 19, 2, 20, 1, 4, 9, 22, 14, 3, 7, 5, 2, 25, 1, 8, 4, 6, 12, 28, 3, 29, 13, 2, 63, 1, 14, 32, 4, 8, 6, 34, 3, 35, 16, 2, 5, 1, 17, 38, 13, 4, 18, 40, 6, 3, 19, 11, 2, 43, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

For k see A138796, for T(k) see A138797 and for T(j) see A138799.
The number of ways n can be written as difference of two triangular numbers is sequence A136107


LINKS

Table of n, a(n) for n=2..90.


EXAMPLE

a(30)=3 because 30 = T(30)T(29)=T(11)T(8)=T(9)T(5)=T(8)T(3) and 3 is the least index of the subtrahends.


MATHEMATICA

T=#(#+1)/2&; Sort[{k, j}/.{ToRules[Reduce[{T[k]T[j]\[Equal]#, 0<j<k}, {j, k}, Integers]]}][[1, 2]]&/@Range[2, 100]


CROSSREFS

Cf. A000217, A109814, A118235, A136107, A138796, A138797, A138799.
Sequence in context: A308707 A158584 A086112 * A277708 A261555 A134734
Adjacent sequences: A138795 A138796 A138797 * A138799 A138800 A138801


KEYWORD

nonn


AUTHOR

Peter Pein (petsie(AT)dordos.net), Mar 30 2008


STATUS

approved



