login
A138791
Least number k such that A070635(k) = n.
5
1, 11, 16, 15, 14, 38, 34, 29, 28, 19, 49, 76, 68, 98, 269, 79, 458, 397, 379, 299, 779, 769, 689, 898, 799, 3889, 4898, 5599, 6698, 7996, 8798, 9599, 19888, 16999, 18899, 67979, 58898, 39899, 59998, 49999, 89789, 189989, 89998, 98999, 489898, 298999
OFFSET
0,2
COMMENTS
A070635(a(n)) = n and A070635(m) <> n for m < a(n).
Least k such that k mod A007953(k) = n. - Robert Israel, Dec 29 2015
LINKS
Robert G. Wilson v and Robert Israel, Table of n, a(n) for n = 0..514(n = 0..79 from Robert G. Wilson v)
EXAMPLE
a(2) = 16: 1+6 = 7 and 16 mod 7 = 2. - Robert Israel, Dec 30 2015
MAPLE
extend:= proc(d, x, sx)
global A, nmin;
local y, n, tmax;
if d = 0 then
n:= x mod sx;
if not assigned(A[n]) then
A[n]:= x;
if n = nmin then
for nmin from n while assigned(A[nmin]) do od:
fi;
fi
else
tmax:= 9*d + sx;
if nmin >= tmax then return fi;
for y from max(0, nmin + 10 - tmax) to 9 do
procname(d-1, 10*x+y, sx+y)
od:
fi
end proc:
A[0]:= 1:
nmin:= 1:
for d from 2 while nmin < 101 do
extend(d, 0, 0)
od:
seq(A[i], i=0..nmin-1); # Robert Israel, Dec 29 2015
MATHEMATICA
t = Table[0, {100}]; Do[ a = Mod[n, Plus @@ IntegerDigits@n]; If[a < 100 && t[[a + 1]] == 0, t[[a + 1]] = n; Print[{a, n}]], {n, 2^31}]
lnk[n_]:=Module[{k=1}, While[Mod[k, Total[IntegerDigits[k]]]!=n, k++]; k]; Array[lnk, 50, 0] (* Harvey P. Dale, Oct 11 2014 *)
PROG
(Haskell)
a199263 n = (fromJust $ elemIndex n a070635_list) + 1
-- Reinhard Zumkeller, Nov 07 2011
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Mar 29 2008
EXTENSIONS
Definition corrected by Robert Israel, Dec 29 2015
STATUS
approved