

A138775


Triangle read by rows: T(n,k)=binomial(n2k,3k) (n>=0, 0<=k<=n/5).


0



1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 10, 1, 20, 1, 35, 1, 56, 1, 1, 84, 7, 1, 120, 28, 1, 165, 84, 1, 220, 210, 1, 286, 462, 1, 1, 364, 924, 10, 1, 455, 1716, 55, 1, 560, 3003, 220, 1, 680, 5005, 715, 1, 816, 8008, 2002, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,9


COMMENTS

Row n contains 1+floor(n/5) terms.
Row sums yield A137356.


REFERENCES

D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4.


LINKS

Table of n, a(n) for n=0..54.


MAPLE

T:=proc(n, k) options operator, arrow: binomial(n2*k, 3*k) end proc: for n from 0 to 20 do seq(T(n, k), k=0..(1/5)*n) end do; # yields sequence in triangular form


MATHEMATICA

Flatten[Table[Binomial[n2k, 3k], {n, 0, 20}, {k, 0, Floor[n/5]}]] (* Harvey P. Dale, Oct 14 2012 *)


CROSSREFS

Cf. A137356.
Sequence in context: A185088 A064947 A059926 * A209385 A121529 A304429
Adjacent sequences: A138772 A138773 A138774 * A138776 A138777 A138778


KEYWORD

nonn,tabf


AUTHOR

Emeric Deutsch, May 10 2008


STATUS

approved



