This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138773 Triangle read by rows: T(n,k) is the coefficient of x^k in the polynomial P[n](x)=b(n)Q[n](x), where b(n)=numerator of binom(2n,n)/2^n=A001790(n) and Q[n](x)=F(-n,1; 1/2-n; x) (hypergeometric function); 0<=k<=n. 0
 1, 1, 2, 3, 4, 8, 5, 6, 8, 16, 35, 40, 48, 64, 128, 63, 70, 80, 96, 128, 256, 231, 252, 280, 320, 384, 512, 1024, 429, 462, 504, 560, 640, 768, 1024, 2048, 6435, 6864, 7392, 8064, 8960, 10240, 12288, 16384, 32768, 12155, 12870, 13728, 14784, 16128, 17920, 20480 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The polynomials Q[n](x) arise in a contact problem in elasticity theory. Row sums yield A001803. T(n,0)=A001790(n). T(n,n)=A046161(n). REFERENCES E. G. Deich (E. Deutsch), On an axially symmetric contact problem for a non-plane stamp with a circular cross-section (in Russian), Prikl. Mat. Mekh., 26, No. 5, 1962, 931-934. LINKS FORMULA Q[n](x)=(2n+1)*Int((x+t^2)^n dt,t=0..sqrt(1-x))/sqrt(1-x). Q[n](x)=1+2nxQ[n-1](x)/(2n-1). MAPLE p:=proc(n) options operator, arrow: numer(simplify(hypergeom([ -n, 1], [1/2-n], x))) end proc: for n from 0 to 9 do P[n]:=p(n) end do: for n from 0 to 9 do seq(coeff(P[n], x, k), k=0..n) end do; CROSSREFS Cf. A001803, A001790, A046161. Sequence in context: A071373 A229597 A175060 * A132989 A283814 A114881 Adjacent sequences:  A138770 A138771 A138772 * A138774 A138775 A138776 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Apr 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 21:25 EDT 2019. Contains 322388 sequences. (Running on oeis4.)