login
A138715
Primes p1 such that p1^2+p2^3=pp are average of twin primes. p1 and p2 consecutive primes, p1 < p2.
0
23, 103, 1471, 1609, 2389, 2861, 4409, 5011, 5507, 5569, 6263, 7793, 8443, 9623, 11483, 11971, 12007, 17137, 17569, 18457, 19949, 21701, 23017, 23279, 23743, 24907, 26321, 27943, 29017, 29191, 29641, 30881, 32059, 32713, 34213, 34583, 35153, 36523, 36887
OFFSET
1,1
MATHEMATICA
a={}; Do[p1=Prime[n]; p2=Prime[n+1]; pp=p1^2+p2^3; If[PrimeQ[pp-1]&&PrimeQ[pp+1], AppendTo[a, p1]], {n, 16^3}]; Print[a];
atpQ[n_]:=Module[{c=First[n]^2+Last[n]^3}, And@@PrimeQ[{c-1, c+1}]]; Transpose[Select[Partition[Prime[Range[5000]], 2, 1], atpQ]][[1]] (* Harvey P. Dale, Sep 11 2011 *)
CROSSREFS
Sequence in context: A142192 A129918 A240839 * A096324 A044274 A044655
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Sep 11 2011
Typo in a(39) corrected by Seth A. Troisi, May 13 2022
STATUS
approved