The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138679 Prime(n)^10 mod prime(n-1). 10
 1, 1, 4, 4, 1, 9, 4, 4, 4, 9, 25, 33, 40, 21, 18, 13, 21, 48, 26, 30, 57, 9, 12, 78, 6, 14, 36, 61, 105, 85, 64, 113, 65, 6, 130, 38, 138, 160, 152, 81, 129, 142, 69, 7, 39, 157, 171, 30, 116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,3 COMMENTS Related sequences type prime(n)^k mod prime(n-1) (k=1,2,3,4) prime(n) mod prime(n-1) is given in A001223 prime(n)^2 mod prime(n-1) is given in A038702 prime(n)^3 mod prime(n-1) is given in A138672 prime(n)^4 mod prime(n-1) is given in A138673 prime(n)^5 mod prime(n-1) is given in A138674 prime(n)^6 mod prime(n-1) is given in A138675 prime(n)^7 mod prime(n-1) is given in A138676 prime(n)^8 mod prime(n-1) is given in A138677 prime(n)^9 mod prime(n-1) is given in A138678 prime(n)^10 mod prime(n-1) is given in A138679 prime(n)^11 mod prime(n-1) is given in A138680 prime(n)^12 mod prime(n-1) is given in A138681 LINKS Harvey P. Dale, Table of n, a(n) for n = 2..1000 EXAMPLE a(1)=1 because 3^10 = 1 mod 2 a(2)=2 because 5^10 = 1 mod 3 MATHEMATICA Table[Mod[Prime[n]^10, Prime[n - 1]], {n, 2, 50}] PowerMod[Last[#], 10, First[#]]&/@Partition[Prime[Range[50]], 2, 1] (* Harvey P. Dale, Apr 17 2014 *) CROSSREFS Cf. A001223, A038702, A138672, A138673, A138674, A138675, A138676, A138677, A138678, A138679, A138680, A138681. Sequence in context: A211788 A318732 A016706 * A179399 A080721 A123588 Adjacent sequences:  A138676 A138677 A138678 * A138680 A138681 A138682 KEYWORD nonn AUTHOR Artur Jasinski, Mar 26 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 07:59 EDT 2020. Contains 333079 sequences. (Running on oeis4.)