login
A138659
Primes p such that 60*p - 1 and 60*p + 1 are twin primes.
3
3, 7, 11, 17, 59, 67, 71, 113, 137, 157, 181, 199, 269, 283, 293, 379, 571, 613, 617, 641, 809, 829, 857, 881, 907, 1033, 1093, 1259, 1427, 1453, 1459, 1471, 1733, 1777, 1847, 1931, 1933, 2017, 2083, 2087, 2239, 2281, 2383, 2549, 2593, 2659, 2677, 2689, 2731
OFFSET
1,1
LINKS
EXAMPLE
3 is a term since it is a prime and 60*3 - 1 = 179 and 60*3 + 1 = 181 are twin primes.
7 is a term since it is a prime and 60*7 - 1 = 419 and 60*7 + 1 = 421 are twin primes.
MAPLE
a:=proc(n) if isprime(60*ithprime(n)-1) = true and isprime(60*ithprime(n)+1) = true then ithprime(n) else end if end proc: seq(a(n), n=1..400); # Emeric Deutsch, May 19 2008
MATHEMATICA
a=60; Select[Prime[Range[10^3]], PrimeQ[a*#-1]&&PrimeQ[a*#+1]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, May 19 2008
STATUS
approved