%I #29 Jul 25 2020 12:07:11
%S 59,127,229,263,331,433,467,569,739,773,977,1181,1249,1283,1453,1487,
%T 1657,1759,1861,1997,2099,2269,2371,2473,2609,2677,2711,3119,3187,
%U 3221,3323,3391,3527,3697,3833,4003,4139,4241,4513,4547,4649,4751,5023,5227,5261
%N Primes of the form 17*k - 9.
%H Daniel Starodubtsev, <a href="/A138633/b138633.txt">Table of n, a(n) for n = 1..10000</a>
%F From _A.H.M. Smeets_, Sep 05 2019: (Start)
%F n ~ (1/16) * a(n)/log(a(n)).
%F n ~ (1/16) * Integral_{x=2..a(n)} dx/log(x). (End)
%e 17*4 - 9 = 59, 17*8 - 9 = 127, 17*14 - 9 = 229, 17*16 - 9 = 263, 17*20 - 9 = 331, 17*26 - 9 = 433, 17*28 - 9 = 467, ...
%t a={};Do[x=17*n-9;If[PrimeQ[x],AppendTo[a,x]],{n,10^2}];a
%t Select[17*Range[400]-9,PrimeQ] (* _Harvey P. Dale_, Jul 25 2020 *)
%Y Cf. A138634.
%Y Primes congruent to k mod 17: A129484 (k=1), A140544 (k=2), A092074 (k=3), A094657 (k=4), A138623 (k=5), A140545 (k=6), A138629 (k=7), this sequence (k=8), A138631 (k=9), A138627 (k=10), A140542 (k=11), A138625 (k=12), A141865 (k=13), A140540 (k=14), A140543 (k=15), A140541 (k=16).
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, May 14 2008
%E More terms from _N. J. A. Sloane_, Jul 11 2008