

A138575


Let H(1) = 0; B(0) = 0; H(n) = (n  B(n  1)); B(n) = H(floor(n/2)); then a(n) = H(n) + B(n).


0



1, 1, 1, 3, 5, 5, 8, 7, 9, 9, 10, 11, 13, 13, 13, 15, 17, 17, 18, 19, 21, 21, 23, 23, 25, 25, 26, 27, 29, 29
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

Dedicated to my high school teachers Mr. Hochhaus and Mr. Bacharach.


LINKS

Table of n, a(n) for n=0..29.
Agoura High School, Home Page


EXAMPLE

H(4) = 4  B(3);
B(3) = 3 / 2 = 1
H(4) = 4  1 = 3.
B(4) = 4 / 2 = 2.
Therefore a(4) = H(4) + B(4) = 3 + 2 = 5.


PROG

(Java)
static int Hochhaus(int n)
{
if (n < 0) return 1;
if (n == 1) return 0;
else return (n  Bacharach(n  1));
}
static int Bacharach(int n)
{
if (n < 0) return 1;
if (n == 0) return 0;
else return (Hochhaus(n/2));
}


CROSSREFS

Sequence in context: A197286 A019632 A021285 * A263209 A101330 A063285
Adjacent sequences: A138572 A138573 A138574 * A138576 A138577 A138578


KEYWORD

nonn


AUTHOR

Andrew Bloom (ambloom_2006(AT)yahoo.com), May 12 2008


STATUS

approved



