login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138553 Table read by rows: T(n,k) is the number of divisors of k that are <= n. 2
1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 1, 3, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 4, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 2, 2, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Suggested by a question from Eric Desbiaux.

The row lengths are the lengths before the pattern for n repeats.

Antidiagonal sums A070824. [From Eric Desbiaux, Dec 10 2009]

LINKS

Table of n, a(n) for n=1..105.

FORMULA

T(n,k) = sum_{i|k, i<=n} 1.

EXAMPLE

The first few rows start:

1, [A000012]

1, 2, [A000034]

1, 2, 2, 2, 1, 3, [A083039]

1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, [A083040]

PROG

(PARI) lista(nrows) = {for (n=1, nrows, for (k=1, lcm(vector(n, i, i)), print1(sumdiv(k, d, d <=n), ", "); ); print(); ); } \\ Michel Marcus, Jun 19 2014

CROSSREFS

Row lengths A003418, row sums A025529, frequencies in rows A096180.

Cf. A243987

Sequence in context: A209402 A082641 A239140 * A069016 A211270 A071414

Adjacent sequences:  A138550 A138551 A138552 * A138554 A138555 A138556

KEYWORD

easy,nonn,tabf

AUTHOR

Franklin T. Adams-Watters, Mar 24 2008

EXTENSIONS

Definition corrected by Franklin T. Adams-Watters, Jun 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.