login
A138545
Central moment sequence of tr(A^4) in USp(6).
2
1, 0, 3, 1, 27, 26, 385, 708, 7231, 20296, 164277, 608565, 4286161, 19021302, 123867107, 617758729, 3862576095, 20774382552, 127548675709, 720773229015, 4401180707397, 25709943020830, 157204921750191, 939751281408962
OFFSET
0,3
COMMENTS
If A is a random matrix in the compact group USp(6) (6x6 complex matrices which are unitary and symplectic), then a(n)=E[(tr(A^4+1))^n] is the n-th central moment of the trace of A^4, since E[tr(A^4)] = -1 (see A138544).
LINKS
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
FORMULA
mgf is A(z)=e^zF(z) where F(z) is the mgf of A138544.
EXAMPLE
a(5) = 26 because E[(tr(A^4)+1)^5] = 26 for a random matrix A in USp(6).
CROSSREFS
Cf. A138544.
Sequence in context: A271128 A271163 A270017 * A271806 A270289 A344037
KEYWORD
nonn
AUTHOR
STATUS
approved