This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138526 Expansion of phi(-q^5) / phi(-q) in powers of q where phi() is a Ramanujan theta function. 5
 1, 2, 4, 8, 14, 22, 36, 56, 84, 126, 184, 264, 376, 528, 732, 1008, 1374, 1856, 2492, 3320, 4394, 5784, 7568, 9848, 12756, 16442, 21096, 26960, 34312, 43500, 54956, 69184, 86804, 108576, 135392, 168336, 208722, 258096, 318320, 391632, 480664 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A10054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). LINKS Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (eta(q^5) / eta(q))^2 * eta(q^2) / eta(q^10) in powers of q. Euler transform of period 10 sequence [ 2, 1, 2, 1, 0, 1, 2, 1, 2, 0, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u^2 - v^2)^2 - u^2 * (v^2 - 1) * (5*v^2 - 1). G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u^2 - v^2) * (u + v)^2 - u * v * (u^2 - 1) * (5*v^2 - 1). G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 * w^2 - u * v * (v^2 - 1). G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 * u6 - u2 * u3)^2 - u1 * u3 * (u2^2 - u6^2). G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 5^(-1/2) g(t) where q = exp(2 pi i t) and g() is g.f. for A138532. G.f.: Product_{k>0} P(5, x^k) / P(10, x^k) where P(n, x) is the n-th cyclotomic polynomial. EXAMPLE 1 + 2*q + 4*q^2 + 8*q^3 + 14*q^4 + 22*q^5 + 36*q^6 + 56*q^7 + 84*q^8 + ... PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^5 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^10 + A), n))} CROSSREFS Cf. Convolution square is A138517. Convolution inverse is A138527. Sequence in context: A025003 A087151 A053798 * A201347 A089054 A055291 Adjacent sequences:  A138523 A138524 A138525 * A138527 A138528 A138529 KEYWORD nonn AUTHOR Michael Somos, Mar 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .