login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138483 Expansion of (phi(q)^3 * phi(q^5) - phi(q) * phi(q^5)^3) / 4 in powers of q where phi() is a Ramanujan theta function. 2
1, 3, 2, 1, 5, 6, 6, 7, 7, 15, 12, 2, 12, 18, 10, 9, 16, 21, 20, 5, 12, 36, 22, 14, 25, 36, 20, 6, 30, 30, 32, 23, 24, 48, 30, 7, 36, 60, 24, 35, 42, 36, 42, 12, 35, 66, 46, 18, 43, 75, 32, 12, 52, 60, 60, 42, 40, 90, 60, 10, 62, 96, 42, 41, 60, 72, 66, 16, 44 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q * phi(q) * chi(q) * f(q^5) * f(-q^10)^2 in powers of q where phi(), chi(), f() are Ramanujan theta functions.

Expansion of eta(q^2)^7 * eta(q^10)^5 / (eta(q)^3 * eta(q^4)^3 * eta(q^5) * eta(q^20)) in powers of q.

Euler transform of period 20 sequence [3, -4, 3, -1, 4, -4, 3, -1, 3, -8, 3, -1, 3, -4, 4, -1, 3, -4, 3, -4, ...].

a(n) is multiplicative with a(2^e) = (2^(e+1) - 5*(-1)^e) / 3 if e>0, a(5^e) = 5^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).

G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 80^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113185.

G.f.: x * Product_{k>0} (1 - x^(2*k)) * (1 + x^(2*k-1))^3 * (1 - x^(5*k))^3 * (1 + x^(10*k-5))^4 * (1 + x^(10*k))^3.

a(n) = -(-1)^n * A110712(n).

EXAMPLE

G.f. = q + 3*q^2 + 2*q^3 + q^4 + 5*q^5 + 6*q^6 + 6*q^7 + 7*q^8 + 7*q^9 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, DivisorSum[ n, n/# KroneckerSymbol[ 25, #] (-1)^Quotient[# + 2, 5] If[ Mod[#, 4] > 0, 1, 5] &]]; (* Michael Somos, Sep 27 2015 *)

a[ n_] := SeriesCoefficient[ q EllipticTheta[3, 0, q] QPochhammer[ -q, q^2] QPochhammer[ -q^5] QPochhammer[ q^10]^2, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *)

a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^3 EllipticTheta[3, 0, q^5] - EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^5]^3) / 4, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *)

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, n/d * kronecker(25, d) * (-1)^((d+2) \ 5) * if(d%4, 1, 5)))};

(PARI) {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (2^(e+1) - 5*(-1)^e) / 3, f = kronecker(5, p); (p^(e+1) - f^(e+1)) / (p - f) )))};

(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^10 + A)^5 / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^5 + A) * eta(x^20 + A)), n))};

CROSSREFS

Cf. A110712, A113185.

Sequence in context: A208608 A209577 A139377 * A110712 A065366 A092879

Adjacent sequences:  A138480 A138481 A138482 * A138484 A138485 A138486

KEYWORD

nonn,mult

AUTHOR

Michael Somos, Mar 20 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 19:51 EST 2019. Contains 329879 sequences. (Running on oeis4.)