%I #16 Sep 08 2022 08:45:33
%S 2,9,50,147,605,1014,2312,3249,5819,11774,14415,24642,33620,38829,
%T 50807,73034,100949,111630,148137,176435,191844,243399,282449,348524,
%U 451632,510050,541059,606797,641574,715064,1016127,1115465,1276292,1333149
%N a(n) = (p^3 - p^2)/2, where p = prime(n).
%C Differences (p^k - p^m)/q with k > m:
%C .
%C expression OEIS sequence
%C -------------- -------------
%C p^2 - p A036689
%C (p^2 - p)/2 A008837
%C p^3 - p A127917
%C (p^3 - p)/2 A127918
%C (p^3 - p)/3 A127919
%C (p^3 - p)/6 A127920
%C p^3 - p^2 A135177
%C (p^3 - p^2)/2 this sequence
%C p^4 - p A138401
%C (p^4 - p)/2 A138417
%C p^4 - p^2 A138402
%C (p^4 - p^2)/2 A138418
%C (p^4 - p^2)/3 A138419
%C (p^4 - p^2)/4 A138420
%C (p^4 - p^2)/6 A138421
%C (p^4 - p^2)/12 A138422
%C p^4 - p^3 A138403
%C (p^4 - p^3)/2 A138423
%C p^5 - p A138404
%C (p^5 - p)/2 A138424
%C (p^5 - p)/3 A138425
%C (p^5 - p)/5 A138426
%C (p^5 - p)/6 A138427
%C (p^5 - p)/10 A138428
%C (p^5 - p)/15 A138429
%C (p^5 - p)/30 A138430
%C p^5 - p^2 A138405
%C (p^5 - p^2)/2 A138431
%C p^5 - p^3 A138406
%C (p^5 - p^3)/2 A138432
%C (p^5 - p^3)/3 A138433
%C (p^5 - p^3)/4 A138434
%C (p^5 - p^3)/6 A138435
%C (p^5 - p^3)/8 A138436
%C (p^5 - p^3)/12 A138437
%C (p^5 - p^3)/24 A138438
%C p^5 - p^4 A138407
%C (p^5 - p^4)/2 A138439
%C p^6 - p A138408
%C (p^6 - p)/2 A138440
%C p^6 - p^2 A138409
%C (p^6 - p^2)/2 A138441
%C (p^6 - p^2)/3 A138442
%C (p^6 - p^2)/4 A138443
%C (p^6 - p^2)/5 A138444
%C (p^6 - p^2)/6 A138445
%C (p^6 - p^2)/10 A138446
%C (p^6 - p^2)/12 A138447
%C (p^6 - p^2)/15 A138448
%C (p^6 - p^2)/20 A122220
%C (p^6 - p^2)/30 A138450
%C (p^6 - p^2)/60 A138451
%C p^6 - p^3 A138410
%C (p^6 - p^3)/2 A138452
%C p^6 - p^4 A138411
%C (p^6 - p^4)/2 A138453
%C (p^6 - p^4)/3 A138454
%C (p^6 - p^4)/4 A138455
%C (p^6 - p^4)/6 A138456
%C (p^6 - p^4)/8 A138457
%C (p^6 - p^4)/12 A138458
%C (p^6 - p^4)/24 A138459
%C p^6 - p^5 A138412
%C (p^6 - p^5)/2 A138460
%H Vincenzo Librandi, <a href="/A138416/b138416.txt">Table of n, a(n) for n = 1..168</a>
%t a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
%t (#^3-#^2)/2&/@Prime[Range[50]] (* _Harvey P. Dale_, Nov 01 2020 *)
%o (PARI) forprime(p=2,1e3,print1((p^3-p^2)/2", ")) \\ _Charles R Greathouse IV_, Jun 16 2011
%o (Magma)[(p^3-p^2)/2: p in PrimesUpTo(1000)]; // _Vincenzo Librandi_, Jun 17 2011
%K nonn,easy
%O 1,1
%A _Artur Jasinski_, Mar 19 2008
%E Definition corrected by _T. D. Noe_, Aug 25 2008