login
A bisection of A000957.
2

%I #16 Apr 26 2023 18:29:50

%S 0,0,2,18,186,2120,25724,325878,4260282,57048048,778483932,

%T 10786724388,151355847012,2146336125648,30711521221376,

%U 442862000693438,6429286894263738,93891870710425440,1378379704593824300,20330047491994213884,301111732041234778316,4476705468260134734384,66784808491631598524136

%N A bisection of A000957.

%F Conjecture: D-finite with recurrence 4*n*(2*n-1)*(7*n-13)*a(n) +(-910*n^3+3489*n^2-4277*n+1680)*a(n-1) +2*(4*n-7)*(7*n-6)*(4*n-5)*a(n-2)=0. Telescoping would provide another recurrence for A000957. - _R. J. Mathar_, Jun 26 2020

%p b:= proc(n) option remember; `if`(n<3, n*(2-n),

%p ((7*n-12)*b(n-1)+(4*n-6)*b(n-2))/(2*n))

%p end:

%p a:= n-> b(2*n):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Apr 26 2023

%o (Python)

%o from itertools import count, islice

%o def A138413_gen(): # generator of terms

%o yield from (0,0)

%o a, c = 0, 1

%o for n in count(1,2):

%o a = (c:=c*((n<<2)+2)//(n+2))-a>>1

%o yield (a:=(c:=c*((n+1<<2)+2)//(n+3))-a>>1)

%o A138413_list = list(islice(A138413_gen(),20)) # _Chai Wah Wu_, Apr 26 2023

%Y Cf. A000957, A138414.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, May 08 2008