

A138407


a(n) = (nth prime)^5(nth prime)^4.


14



16, 162, 2500, 14406, 146410, 342732, 1336336, 2345778, 6156502, 19803868, 27705630, 67469796, 113030440, 143589642, 224465326, 410305012, 702806938, 830750460, 1329973986, 1778817670, 2044673352, 3038106318, 3891582322
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Differences p^kp^m such that k > m:
p^2p is given in A036689
p^3p is given in A127917
p^3p^2 is given in A135177
p^4p is given in A138401
p^4p^2 is given in A138402
p^4p^3 is given in A138403
p^5p is given in A138404
p^5p^2 is given in A138405
p^5p^4 is given in A138406
p^6p is given in A138408
p^6p^2 is given in A138409
p^6p^3 is given in A138410
p^6p^4 is given in A138411
p^6p^5 is given in A138412


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200


MATHEMATICA

a = {}; Do[p = Prime[n]; AppendTo[a, p^5  p^4], {n, 1, 50}]; a
f54[n_]:=Module[{c=Prime[n]}, c^5c^4]; Array[f54, 30] (* Harvey P. Dale, Mar 29 2015 *)


PROG

(PARI) forprime(p=2, 1e3, print1(p^5p^4", ")) \\ Charles R Greathouse IV, Jun 16 2011
(MAGMA) [NthPrime((n))^5  NthPrime((n))^4: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011


CROSSREFS

Sequence in context: A232333 A091363 A225897 * A094857 A204031 A025930
Adjacent sequences: A138404 A138405 A138406 * A138408 A138409 A138410


KEYWORD

nonn,easy


AUTHOR

Artur Jasinski, Mar 19 2008


EXTENSIONS

First Mathematica program corrected by Harvey P. Dale, Mar 29 2015


STATUS

approved



