login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138302 Exponentially 2^n-numbers: 1 together with positive integers n such that all exponents in prime factorization of n are powers of 2. 10
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Previous name: sequence consists of products of distinct relatively prime terms of A084400. - Vladimir Shevelev, Sep 24 2015

These numbers are also called "compact integers."

The density of this sequence exists and equals 0.872497...

There exist only seven compact factorials A000142(n) for n=1,2,3,6,7,10 and 11.

For a general definition of exponentially S-numbers, see comments in A209061. - Vladimir Shevelev, Sep 24 2015

The first 1000 digits of the density of the sequence were calculated by Juan Arias-de-Reyna in A271727. - Vladimir Shevelev, Apr 18 2016

A225546 maps the set of terms 1:1 onto A268375. - Peter Munn, Jan 26 2020

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000

S. Litsyn and V. Shevelev, On Factorization of Integers with Restrictions on the Exponents, INTEGERS: The Electronic Journal of Combinatorial Number Theory 7 (2007), #A33.

Vladimir Shevelev, Compact integers and factorials, Acta Arithmetica 126:3 (2007), pp. 195-236.

Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015-2016.

FORMULA

Identities arising from the calculation of the density h of the sequence (cf. [Shevelev] and comment for a generalization in A209061):

h = Product_{prime p} Sum_{j in {0 and 2^k}}(p-1)/p^(j+1) = Product_{prime p} (1 + Sum_{j>=2} (u(j) - u(j-1))/p^j) = (1/zeta(2))* Product_{p}(1 + 1/(p+1))*Sum_{i>=1}p^(-(2^i-1)), where u(n) is the characteristic function of set {2^k, k>=0}. - Vladimir Shevelev, Sep 24 2015

EXAMPLE

60 = 2^(2^1)*3^(2^0)*5^(2^0).

MAPLE

isA000079 := proc(n)

    if n = 1 then

        true;

    else

        type(n, 'even') and nops(numtheory[factorset](n))=1 ;

        simplify(%) ;

    end if;

end proc:

isA138302 := proc(n)

    local p;

    if n = 1 then

        return true;

    end if;

    for p in ifactors(n)[2] do

        if not isA000079(op(2, p)) then

            return false;

        end if;

    end do:

    true ;

end proc:

for n from 1 to 100 do

    if isA138302(n) then

        printf("%d, ", n) ;

    end if;

end do: # R. J. Mathar, Sep 27 2016

MATHEMATICA

lst={}; Do[p=Prime[n]; s=p^(1/3); f=Floor[s]; a=f^3; d=p-a; AppendTo[lst, d], {n, 100}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)

selQ[n_] := AllTrue[FactorInteger[n][[All, 2]], IntegerQ[Log[2, #]]&];

Select[Range[100], selQ] (* Jean-Fran├žois Alcover, Oct 29 2018 *)

PROG

(PARI) is(n)=if(n<8, n>0, vecmin(apply(n->n>>valuation(n, 2)==1, factor(n)[, 2]))) \\ Charles R Greathouse IV, Dec 07 2012

CROSSREFS

Cf. A000142, A005117, A050376, A084400, A209061, A271727.

Related to A268375 via A225546.

Sequence in context: A270420 A220218 A096432 * A270428 A183220 A187947

Adjacent sequences:  A138299 A138300 A138301 * A138303 A138304 A138305

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, May 07 2008

EXTENSIONS

Incorrect comment removed by Charles R Greathouse IV, Dec 07 2012

Simpler name from Vladimir Shevelev, Sep 24 2015

Edited by N. J. A. Sloane, Nov 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 11:48 EDT 2020. Contains 334748 sequences. (Running on oeis4.)