login
A138182
Smallest summand in the Zeckendorf representation of the n-th prime.
4
2, 3, 5, 2, 3, 13, 1, 1, 2, 8, 2, 3, 2, 1, 13, 1, 1, 1, 1, 3, 5, 3, 2, 89, 8, 1, 1, 5, 2, 3, 1, 8, 1, 3, 5, 2, 13, 1, 2, 8, 1, 3, 13, 2, 1, 55, 1, 3, 2, 1, 233, 1, 8, 5, 3, 1, 2, 1, 2, 1, 3, 5, 1, 2, 1, 8, 1, 2, 1, 1, 2, 3, 3, 1, 2, 1, 1, 2, 3, 3, 8, 2, 2, 1, 2, 3, 1, 1, 8, 2, 1, 13, 21, 1, 1, 3, 1, 144, 2, 2
OFFSET
1,1
FORMULA
a(n) = A139764(A000040(n)). [From R. J. Mathar, Oct 23 2010]
EXAMPLE
a(5) = 3 because the Zeckendorf representation of the 5th prime is 11 = 3 + 8.
PROG
(Python)
from sympy import prime
def A138182(n):
m, tlist = prime(n), [1, 2]
while tlist[-1]+tlist[-2] <= m:
tlist.append(tlist[-1]+tlist[-2])
for d in tlist[::-1]:
if d == m:
return d
elif d < m:
m -= d # Chai Wah Wu, Jun 14 2018
CROSSREFS
Sequence in context: A265668 A273087 A236434 * A167835 A102044 A370590
KEYWORD
easy,nonn
AUTHOR
Colm Mulcahy, Mar 04 2008
EXTENSIONS
a(8) replaced by 1. Sequence extended beyond a(18) - R. J. Mathar, Oct 23 2010
STATUS
approved