login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138180 Irregular triangle read by rows: row n consists of all numbers x such that x and x+1 have no prime factor larger than prime(n). 10
1, 1, 2, 3, 8, 1, 2, 3, 4, 5, 8, 9, 15, 24, 80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A number x is p-smooth if all prime factors of x are <= p. The length of row n is A002071(n). Row n begins with 1 and ends with A002072(n). Each term of row n-1 is in row n.

The n-th row is the union of the rows 1 to n of A145605. - M. F. Hasler, Jan 18 2015

REFERENCES

See A002071.

LINKS

T. D. Noe, Rows n=1..10 of triangle, flattened

EXAMPLE

The table reads:

1,

1, 2, 3, 8,

1, 2, 3, 4, 5, 8, 9, 15, 24, 80,  (= A085152)

1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 24, 27, 35, 48, 49, 63, 80, 125, 224, 2400, 4374, (= A085153)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 20, 21, 24, 27, 32, 35, 44, 48, 49, 54, 55, 63, 80, 98, 99, 120, 125, 175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800 (= A252494),

...

MATHEMATICA

(* This program needs x maxima taken from A002072. *) xMaxima = A002072; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; row[n_] := Module[{sn}, sn = smoothNumbers[Prime[n], xMaxima[[n]]+1]; Reap[Do[If[sn[[i]]+1 == sn[[i+1]], Sow[sn[[i]]]], {i, 1, Length[sn]-1}]][[2, 1]]]; Table[Print[n]; row[n], {n, 1, 10}] // Flatten (* Jean-Fran├žois Alcover, Jan 16 2015, updated Nov 10 2016 *)

PROG

(PARI) A138180_row=[]; A138180(n, k)={if(k, A138180(n)[k], #A138180_row<n && A138180_row=concat(A138180_row, vector(n)); if(#A138180_row[n], A138180_row[n], k=0; p=prime(n); A138180_row[n]=vector(A002071(n), i, until( vecmax(factor(k++)[, 1])<=p && vecmax(factor(k--+(k<2))[, 1])<=p, k++); k)))} \\ A138180(n) (w/o 2nd arg. k) returns the whole row. - M. F. Hasler, Jan 16 2015

CROSSREFS

Cf. A145605; A085152, A085153, A252494, A252493, A252492.

Sequence in context: A131959 A202688 A021046 * A079585 A252651 A058485

Adjacent sequences:  A138177 A138178 A138179 * A138181 A138182 A138183

KEYWORD

nonn,tabf

AUTHOR

T. D. Noe, Mar 04 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 12:33 EST 2020. Contains 332136 sequences. (Running on oeis4.)