login
A138148
Cyclops numbers with binary digits only.
102
0, 101, 11011, 1110111, 111101111, 11111011111, 1111110111111, 111111101111111, 11111111011111111, 1111111110111111111, 111111111101111111111, 11111111111011111111111, 1111111111110111111111111, 111111111111101111111111111, 11111111111111011111111111111
OFFSET
0,2
COMMENTS
All members are palindromes A002113. The first five members are mentioned in A129868.
Also, binary representation of A129868.
a(A090748(n)) is equal to A138831(n), the n-th perfect number minus 1, written in base 2.
Except for the first term (replace 0 with 1) the binary representation of the n-th iteration of the elementary cellular automaton, Rule 219 starting with a single ON (black) cell. - Robert Price, Feb 21 2016
a(1) = 101 is only prime number in this sequence since a(n) = (10^(n+1)+1)*(10^n-1)/9. - Altug Alkan, May 11 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
From Colin Barker, Feb 21 2013: (Start)
a(n) = (-1-9*10^n+10^(1+2*n))/9.
G.f.: x*(200*x-101) / ((x-1)*(10*x-1)*(100*x-1)). (End)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2. - Wesley Ivan Hurt, Dec 08 2015
a(n) = A000533(n+1)*A002275(n). - Altug Alkan, May 12 2016
E.g.f.: (-1 - 9*exp(9*x) + 10*exp(99*x))*exp(x)/9. - Ilya Gutkovskiy, May 12 2016
a(n) = A002275(2n+1) - A011557(n). - M. F. Hasler, Feb 08 2020
EXAMPLE
n ........ a(n) .... A129868(n): value of a(n) read in base 2.
0 ......... 0 ......... 0
1 ........ 101 ........ 5
2 ....... 11011 ....... 27
3 ...... 1110111 ...... 119
4 ..... 111101111 ..... 495
5 .... 11111011111 .... 2015
6 ... 1111110111111 ... 8127
MAPLE
A138148:=n->(-1-9*10^n+10^(1+2*n))/9: seq(A138148(n), n=0..15); # Wesley Ivan Hurt, Dec 08 2015
MATHEMATICA
Table[(-1 - 9*10^n + 10^(1 + 2*n))/9, {n, 0, 15}] (* Wesley Ivan Hurt, Dec 08 2015 *)
PROG
(PARI) for(n=1, 20, if(n%2==1, c=((10^n-1)/9)-10^((n-1)/2); print1(c, ", "))) \\ Felix Fröhlich, Jul 07 2014
(PARI) apply( {A138148(n)=10^(n*2+1)\9-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
(Magma) [(-1 - 9*10^n + 10^(1 + 2*n))/9 : n in [0..15]]; // Wesley Ivan Hurt, Dec 08 2015
CROSSREFS
Cyclops numbers: A134808. Cf. A002113, A129868.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Sequence in context: A097727 A083981 A267779 * A138831 A267920 A300570
KEYWORD
easy,nonn,base
AUTHOR
Omar E. Pol, Mar 18 2008
EXTENSIONS
More terms from Omar E. Pol, Feb 09 2020
STATUS
approved