OFFSET
0,2
COMMENTS
Also, binary representation of A129868.
Except for the first term (replace 0 with 1) the binary representation of the n-th iteration of the elementary cellular automaton, Rule 219 starting with a single ON (black) cell. - Robert Price, Feb 21 2016
a(1) = 101 is only prime number in this sequence since a(n) = (10^(n+1)+1)*(10^n-1)/9. - Altug Alkan, May 11 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video, video (2015).
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
FORMULA
From Colin Barker, Feb 21 2013: (Start)
a(n) = (-1-9*10^n+10^(1+2*n))/9.
G.f.: x*(200*x-101) / ((x-1)*(10*x-1)*(100*x-1)). (End)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2. - Wesley Ivan Hurt, Dec 08 2015
E.g.f.: (-1 - 9*exp(9*x) + 10*exp(99*x))*exp(x)/9. - Ilya Gutkovskiy, May 12 2016
EXAMPLE
n ........ a(n) .... A129868(n): value of a(n) read in base 2.
0 ......... 0 ......... 0
1 ........ 101 ........ 5
2 ....... 11011 ....... 27
3 ...... 1110111 ...... 119
4 ..... 111101111 ..... 495
5 .... 11111011111 .... 2015
6 ... 1111110111111 ... 8127
MAPLE
MATHEMATICA
Table[(-1 - 9*10^n + 10^(1 + 2*n))/9, {n, 0, 15}] (* Wesley Ivan Hurt, Dec 08 2015 *)
PROG
(PARI) for(n=1, 20, if(n%2==1, c=((10^n-1)/9)-10^((n-1)/2); print1(c, ", "))) \\ Felix Fröhlich, Jul 07 2014
(PARI) apply( {A138148(n)=10^(n*2+1)\9-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
(Magma) [(-1 - 9*10^n + 10^(1 + 2*n))/9 : n in [0..15]]; // Wesley Ivan Hurt, Dec 08 2015
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Omar E. Pol, Mar 18 2008
EXTENSIONS
More terms from Omar E. Pol, Feb 09 2020
STATUS
approved