The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138138 A shell model of partitions. Triangle read by rows: row n lists the parts of the last section of the set of partitions of n. 8
 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 2, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 2, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 4, 3, 5, 2, 6, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The Integrated Diagram of Partitions is a shell model of partitions of a number. Partitions of n contains all partitions of the previous numbers. The number of shells of the partitions of n is equal to n. The number of parts of the last section of the set of partitions of n is A138137(n)=A006128(n)-A006128(n-1) and equal to the number of terms of row n. The number of terms of row n that are equal to 1 is A000041(n-1). The last term of row n is n. The shell model of partitions has several 2D and 3D versions. LINKS Robert Price, Table of n, a(n) for n = 1..4630, 20 rows. EXAMPLE ........................................ .. Integrated Diagram of Partitions ... ........... for n = 1 to 9 ............ ....................................... Partition number \ n = 1 2 3 4 5 6 7 8 9 ........................................ .1) A000041(1)= 1 .... 1 1 1 1 1 1 1 1 1 .2) A000041(2)= 2 .... . 2 1 1 1 1 1 1 1 .3) A000041(3)= 3 .... . . 3 1 1 1 1 1 1 .4) .................. . 2 . 2 1 1 1 1 1 .5) A000041(4)= 5 .... . . . 4 1 1 1 1 1 .6) .................. . . 3 . 2 1 1 1 1 .7) A000041(5)= 7 .... . . . . 5 1 1 1 1 .8) .................. . 2 . 2 . 2 1 1 1 .9) .................. . . 3 . . 3 1 1 1 10) .................. . . . 4 . 2 1 1 1 11) A000041(6)=11 .... . . . . . 6 1 1 1 12) .................. . . 3 . 2 . 2 1 1 13) .................. . . . 4 . . 3 1 1 14) .................. . . . . 5 . 2 1 1 15) A000041(7)=15 .... . . . . . . 7 1 1 16) .................. . 2 . 2 . 2 . 2 1 17) .................. . . 3 . . 3 . 2 1 18) .................. . . . 4 . 2 . 2 1 19) .................. . . . 4 . . . 4 1 20) .................. . . . . 5 . . 3 1 21) .................. . . . . . 6 . 2 1 22) A000041(8)=22 .... . . . . . . . 8 1 23) .................. . . 3 . 2 . 2 . 2 24) .................. . . 3 . . 3 . . 3 25) .................. . . . 4 . . 3 . 2 26) .................. . . . . 5 . 2 . 2 27) .................. . . . . 5 . . . 4 28) .................. . . . . . 6 . . 3 29) .................. . . . . . . 7 . 2 30) A000041(9)=30 .... . . . . . . . . 9 ....................................... Triangle begins: 1 1,2 1,1,3, 1,1,1,2,2,4 1,1,1,1,1,2,3,5 1,1,1,1,1,1,1,2,2,2,3,3,2,4,6 1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,2,5,7 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,2,2,4,4,4,3,5,2,6,8 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,2,3,4,2,2,5,4,5,3,6,2,7,9 MATHEMATICA Table[ConstantArray[{1}, PartitionsP[n - 1]] ~Join~ Reverse@Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], {n, 8}] // Flatten (* Robert Price, May 22 2020 *) CROSSREFS Cf. A000041, A006128, A138137. See A135010 for another version. Sequence in context: A211989 A207377 A135010 * A230440 A283495 A196931 Adjacent sequences:  A138135 A138136 A138137 * A138139 A138140 A138141 KEYWORD nonn,tabf,less,changed AUTHOR Omar E. Pol, Mar 16 2008, Mar 25 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 22:35 EDT 2020. Contains 334756 sequences. (Running on oeis4.)