login
Number of parts > 1 in the last section of the set of partitions of n.
25

%I #29 Mar 05 2021 21:43:38

%S 0,1,1,3,3,8,8,17,20,34,41,68,80,123,153,219,271,382,469,642,795,1055,

%T 1305,1713,2102,2713,3336,4241,5190,6545,7968,9950,12090,14953,18104,

%U 22255,26821,32752,39371,47774,57220,69104

%N Number of parts > 1 in the last section of the set of partitions of n.

%C Also first differences of A096541. For more information see A135010.

%H Alois P. Heinz, <a href="/A138135/b138135.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A096541(n)-A096541(n-1) = A138137(n)-A000041(n-1) = A006128(n)-A006128(n-1)-A000041(n-1).

%F a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma - 2 + log(6*n/Pi^2))/(8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Oct 24 2016

%F G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k) / Product_{j>=2} (1 - x^j). - _Ilya Gutkovskiy_, Mar 05 2021

%p b:= proc(n, i) option remember; local f, g;

%p if n=0 or i=1 then [1, 0]

%p else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));

%p [f[1]+g[1], f[2]+g[2]+`if`(i>1, g[1], 0)]

%p fi

%p end:

%p a:= n-> b(n, n)[2]-b(n-1, n-1)[2]:

%p seq (a(n), n=1..60); # _Alois P. Heinz_, Apr 04 2012

%t a[n_] := DivisorSigma[0, n] - 1 + Sum[(DivisorSigma[0, k] - 1)*(PartitionsP[n - k] - PartitionsP[n - k - 1]), {k, 1, n - 1}]; Table[a[n], {n, 1, 42}] (* _Jean-François Alcover_, Jan 14 2013, from 1st formula *)

%t Table[Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 42}] (* _Robert Price_, May 01 2020 *)

%o (PARI) a(n)=numdiv(n)-1+sum(k=1,n-1,(numdiv(k)-1)*(numbpart(n-k) - numbpart(n-k-1))) \\ _Charles R Greathouse IV_, Jan 14 2013

%Y Zero together with the column k=2 of A207031.

%Y Cf. A000041, A006128, A096541, A135010, A138121, A138137.

%K nonn

%O 1,4

%A _Omar E. Pol_, Mar 30 2008