login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138093 A triangular sequence of six back recursive polynomial that are Hermite H(x,n) like and alternating orthogonal on domain {-Infinity,Infinity} and weight function Exp[ -x^2/2]:k=6 P(x, n) = Sum[If[Mod[m, 2] == 1, (m + 1)*x^m*P(x, n - m), n^(m/2)*P(x, n - m)], {m, 1, k}]. 1

%I #2 Mar 30 2012 17:34:26

%S 1,0,2,2,0,4,0,10,0,12,24,0,36,0,32,0,148,0,140,0,86,432,0,656,0,512,

%T 0,232,0,3076,0,2976,0,1782,0,616,6016,0,15752,0,12688,0,6040,0,1648,

%U 0,58994,0,80104,0,51148,0,19888,0,4416,127360,0,377108,0,382592,0,198688

%N A triangular sequence of six back recursive polynomial that are Hermite H(x,n) like and alternating orthogonal on domain {-Infinity,Infinity} and weight function Exp[ -x^2/2]:k=6 P(x, n) = Sum[If[Mod[m, 2] == 1, (m + 1)*x^m*P(x, n - m), n^(m/2)*P(x, n - m)], {m, 1, k}].

%C Row sums are:

%C {1, 2, 6, 22, 92, 374, 1832, 8450, 42144, 214550, 1161784};

%C The alternating orthogonal integration is:

%C Table[Integrate[P[x, n]*P[x, m]*Exp[ -x^2/2], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0,10}] // TableForm;

%C This sequence is the result of a thought experiment for Sixth derivatives.

%F P(x, n) = Sum[If[Mod[m, 2] == 1, (m + 1)*x^m*P(x, n - m), n^(m/2)*P(x, n - m)], {m, 1, k}]; out_n,m=Coefficients(P(x,n)).

%e {1},

%e {0, 2},

%e {2, 0, 4},

%e {0, 10, 0, 12},

%e {24, 0, 36, 0, 32},

%e {0, 148, 0, 140, 0, 86},

%e {432, 0, 656, 0, 512, 0, 232},

%e {0, 3076, 0, 2976, 0, 1782, 0, 616},

%e {6016, 0, 15752, 0, 12688, 0, 6040, 0, 1648},

%e {0, 58994, 0, 80104, 0, 51148, 0, 19888, 0, 4416},

%e {127360, 0, 377108, 0, 382592, 0, 198688, 0, 64224, 0, 11812}

%t Clear[P, x]:k=6; Table[P[x, -n] = 0, {n, 1, k}]; P[x, 0] = 1; P[x_, n_] := P[x, n] = Sum[If[Mod[m, 2] == 1, (m + 1)*x^m*P[x, n - m], n^(m/2)*P[x, n - m]], {m, 1, k}];; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[P[x, n], x]], {n, 0, 10}];

%Y Similar to but different from A138094.

%K nonn,uned,tabl

%O 1,3

%A _Roger L. Bagula_, May 02 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 20:08 EDT 2024. Contains 371963 sequences. (Running on oeis4.)