login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138092 A triangular sequence of four back recursive polynomial that are Hermite H(x,n) like and alternating orthogonal on domain {-Infinity,Infinity} and weight function Exp[ -x^2/2]: P(x, n) = 2*x*P(x, n - 1) - n*P(x, n - 2) + 4*x^3*P(x, n - 3)-n^2*P(x, n - 4). 0
1, 0, 2, -2, 0, 4, 0, -10, 0, 12, -8, 0, -36, 0, 32, 0, -16, 0, -140, 0, 80, 120, 0, 40, 0, -512, 0, 208, 0, 842, 0, 440, 0, -1728, 0, 544, -448, 0, 3668, 0, 2864, 0, -5680, 0, 1408, 0, -7178, 0, 15196, 0, 14960, 0, -18304, 0, 3648, -7520, 0, -55036, 0, 56320, 0, 67680, 0, -57600, 0, 9472 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Row sums are:

{1, 2, 2, 2, -12, -76, -144, 98, 1812, 8322, 13316};

The alternating orthogonal integration is:

Table[Integrate[P[x, n]*P[x, m]*Exp[ -x^2/2], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0,10}] // TableForm;

This sequence is the result of a thought experiment for fourth derivatives.

LINKS

Table of n, a(n) for n=1..66.

FORMULA

P(x, n) = 2*x*P(x, n - 1) - n*P(x, n - 2) + 4*x^3*P(x, n - 3)-n^2*P(x, n - 4); out_n,m=Coefficients(P(x,n)).

EXAMPLE

{1},

{0, 2},

{-2, 0, 4},

{0, -10, 0, 12},

{-8, 0, -36, 0, 32},

{0, -16, 0, -140, 0, 80},

{120, 0, 40, 0, -512, 0, 208},

{0, 842, 0, 440, 0, -1728, 0, 544},

{-448, 0, 3668, 0, 2864, 0, -5680, 0, 1408},

{0, -7178, 0, 15196, 0, 14960, 0, -18304, 0, 3648},

{-7520, 0, -55036, 0, 56320, 0, 67680, 0, -57600, 0, 9472}

MATHEMATICA

Clear[P, x] P[x, -2] = 0; P[x, -1] = 0; P[x, 0] = 1; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - n*P[x, n - 2] + 4*x^3*P[x, n - 3]-n^2*P[x, n - 4]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[P[x, n], x]], {n, 0, 10}];

CROSSREFS

Sequence in context: A295215 A112080 A052176 * A138090 A138093 A138094

Adjacent sequences:  A138089 A138090 A138091 * A138093 A138094 A138095

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, May 02 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 17:27 EST 2019. Contains 320222 sequences. (Running on oeis4.)