login
A138091
Numbers n such that n^0+(n+1)^1+(n+2)^2+(n+3)^3+(n+4)^4+(n+5)^5+(n+6)^6+(n+7)^7+(n+8)^8+(n+9)^9+(n+10)^10+(n+11)^11+(n+12)^12+(n+13)^13 is a prime.
2
25, 43, 55, 109, 131, 379, 389, 587, 617, 649, 683, 697, 719, 971, 1013, 1279, 1291, 1727, 1735, 1823, 1853, 2005, 2059, 2087, 2167, 2395, 2399, 2561, 2647, 2783, 2957, 2983
OFFSET
1,1
MATHEMATICA
a={}; Do[If[PrimeQ[n^70+(n+1)^1+(n+2)^2+(n+3)^3+(n+4)^4+(n+5)^5+(n+6)^6+(n+7)^7+(n+8)^8+(n+9)^9+(n+10)^10+(n+11)^11+(n+12)^12+(n+13)^13], AppendTo[a, n]], {n, 10^3*3}]; a
Select[Range[3000], PrimeQ[Total[Range[#, #+13]^Range[0, 13]]]&] (* Harvey P. Dale, Apr 25 2018 *)
PROG
(Python)
from sympy import isprime
A138091_list, m = [], [6227020800, 44068147200, 181142438400, 564307430400, 1475073815040, 3408641107200, 7182564530400, 14081919023520, 26048741640120, 45924510262992, 77755456075656, 127171611204708, 201851662963039, 312086923782438]
for n in range(1, 2*10**5+1):
....for i in range(13):
........m[i+1]+= m[i]
....if isprime(m[-1]):
........A138091_list.append(n) # Chai Wah Wu, Nov 06 2014
CROSSREFS
Sequence in context: A240758 A031331 A236838 * A105507 A015911 A188005
KEYWORD
nonn
AUTHOR
STATUS
approved