login
A137991
Decimal expansion of the inverse of the number whose Engel expansion has the sequence of Fibonacci numbers (A000045) as coefficients.
3
3, 6, 9, 7, 5, 3, 7, 1, 7, 1, 4, 8, 0, 8, 9, 0, 9, 6, 5, 4, 5, 2, 9, 4, 7, 8, 8, 9, 3, 2, 9, 1, 2, 0, 8, 6, 2, 0, 4, 7, 6, 0, 7, 3, 5, 8, 0, 7, 6, 3, 4, 9, 4, 9, 9, 5, 7, 3, 5, 9, 7, 2, 8, 4, 6, 8, 6, 5, 2, 8, 4, 0, 3, 4, 5, 3, 1, 9, 2, 8, 6, 0, 7, 7, 2, 3, 9, 7, 5, 1, 0, 0, 3, 0, 0, 7, 2, 6, 8
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Pierce Expansion.
Eric Weisstein's World of Mathematics, Engel Expansion.
MAPLE
with (combinat, fibonacci); P:=proc(n) local a, i, k; a:=0; k:=1; for i from 1 by 1 to n do k:=k*fibonacci(i); a:=a+1/k; print(evalf(1/a, 100)); od; end: P(100);
MATHEMATICA
RealDigits[N[1/(Sum[Product[1/Fibonacci[k], {k, 1, n}], {n, 1, 1000}]),
100]][[1]] (* G. C. Greubel, Dec 26 2016 *)
CROSSREFS
Cf. A000045, A101689 (reciprocal), A137987.
Sequence in context: A351189 A187082 A377030 * A021077 A114041 A212712
KEYWORD
easy,nonn,cons
AUTHOR
STATUS
approved