login
A137983
G.f.: A(x) = 1/(1 - x*A_0(x)) where A_0(x) = 1/(1 - 2x*A_1(x)^(1/2)) such that A_{n-1}(x) = 1/(1 - 2^n*x*[A_{n}(x)]^(1/2^n)) for n>=1 with A_0(x) equal to the g.f. of A137984.
0
1, 1, 3, 13, 71, 469, 3723, 36005, 436547, 6899269, 148118063, 4468393661, 193343082863, 12098043923845, 1095808155971903, 143385496616202557, 27027137980334917335, 7318231233568088061141, 2839533242388092176367563
OFFSET
0,3
EXAMPLE
See examples given in A137984.
PROG
(PARI) {a(n)=local(A=1+2^n*x+x*O(x^n)); for(i=0, n, A=1/(1-2^(n-i)*x*A^(1/2^(n-i))+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Cf. A137984.
Sequence in context: A000261 A111140 A302699 * A327677 A307005 A059032
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 27 2008
STATUS
approved