login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137952 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^2. 4
1, 1, 2, 7, 24, 95, 386, 1641, 7150, 31844, 144216, 662228, 3076044, 14427582, 68235078, 325049475, 1558212804, 7511319253, 36387218312, 177050945886, 864912345340, 4240388439744, 20857232340528, 102896737106415 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..23.

FORMULA

G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137953.

a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009

Recurrence: 5*n*(5*n - 4)*(5*n - 3)*(5*n - 1)*(5*n + 3)*(8845200*n^11 - 252428400*n^10 + 3221192232*n^9 - 24137808840*n^8 + 117463352781*n^7 - 387964460127*n^6 + 882822962553*n^5 - 1374856808005*n^4 + 1422227015434*n^3 - 915895407668*n^2 + 320324023880*n - 42693386400)*a(n) = - 360*(5*n - 2)*(5670000*n^13 - 63714600*n^12 - 1032645960*n^11 + 24848001198*n^10 - 218480624507*n^9 + 1101741928166*n^8 - 3582401014336*n^7 + 7865579681092*n^6 - 11836392808433*n^5 + 12130520012664*n^4 - 8236278842764*n^3 + 3497924862840*n^2 - 827741189520*n + 81691545600)*a(n-1) + 180*(2653560000*n^16 - 86342760000*n^15 + 1284348733200*n^14 - 11544882534000*n^13 + 69915022739748*n^12 - 301277354913324*n^11 + 951521048997123*n^10 - 2235356609743737*n^9 + 3921814538564296*n^8 - 5108337175422974*n^7 + 4854490688899951*n^6 - 3250616687965913*n^5 + 1431302003002666*n^4 - 349408874612852*n^3 + 16089460853736*n^2 + 12240998632800*n - 2031289747200)*a(n-2) + 72*(17672709600*n^16 - 601551846000*n^15 + 9383367519936*n^14 - 88661500185240*n^13 + 565349613141438*n^12 - 2565633937621131*n^11 + 8513410651166583*n^10 - 20875837005697545*n^9 + 37705724089968084*n^8 - 49181218885648923*n^7 + 44098626888119141*n^6 - 23771481353637565*n^5 + 3467317211974378*n^4 + 4824415011450004*n^3 - 3654086377331160*n^2 + 1070168332564800*n - 116760296016000)*a(n-3) + 144*(8597534400*n^16 - 305543145600*n^15 + 4975684360704*n^14 - 49077873815616*n^13 + 326509076764188*n^12 - 1543742190898488*n^11 + 5321067950386782*n^10 - 13479709842928188*n^9 + 24903384308348709*n^8 - 32579354322085314*n^7 + 27941366702438094*n^6 - 11913061039189846*n^5 - 3157851308946897*n^4 + 7647346836930652*n^3 - 4534021704525180*n^2 + 1245319349576400*n - 132684717816000)*a(n-4) + 72*(2*n - 7)*(3*n - 14)*(3*n - 10)*(6*n - 25)*(6*n - 23)*(8845200*n^11 - 155131200*n^10 + 1183394232*n^9 - 5046898752*n^8 + 12951310413*n^7 - 19922972292*n^6 + 16394061984*n^5 - 2858995378*n^4 - 7011543813*n^3 + 6369403462*n^2 - 2180183136*n + 267092640)*a(n-5). - Vaclav Kotesovec, Nov 18 2017

a(n) ~ sqrt((1 + 4*r*s^3 + 3*r^2*s^6) / (3*Pi*s*(2 + 5*r*s^3))) / (2*n^(3/2) * r^(n + 1/2)), where r = 0.1898739884773465982357897900946346962414966313829... and s = 1.607584028097173055359903977736399386285943742600... are roots of the system of equations 1 + r*(1 + r*s^3)^2 = s, 6*r^2*s^2*(1 + r*s^3) = 1. - Vaclav Kotesovec, Nov 18 2017

MATHEMATICA

Flatten[{1, Table[Sum[Binomial[2*(n-k), k]/(n-k) * Binomial[3*k, n-k-1], {k, 0, n-1}], {n, 1, 30}]}] (* Vaclav Kotesovec, Nov 18 2017 *)

PROG

(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*(1+x*A^3)^2); polcoeff(A, n)}

(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, binomial(2*(n-k), k)/(n-k)*binomial(3*k, n-k-1))) \\ Paul D. Hanna, Jun 16 2009

CROSSREFS

Cf. A137953, A019497; A137955, A137960, A137967.

Sequence in context: A150420 A150421 A150422 * A005754 A007162 A150423

Adjacent sequences: A137949 A137950 A137951 * A137953 A137954 A137955

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 26 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 14:48 EST 2022. Contains 358431 sequences. (Running on oeis4.)