%I #9 Aug 28 2022 17:21:15
%S 211,293,631,787,797,839,1249,1259,1399,1409,1471,1511,1637,1709,1801,
%T 1811,1847,1889,2039,2053,2099,2179,2503,2521,2579,2633,2647,2767,
%U 2777,2819,2927,2939,3109,3137,3271,3433,3571,3593,3659,3779,3833,3863,3967
%N Prime numbers, isolated from neighboring primes by >8.
%C The distance to the nearest prime has to exceed 8 and equality is not allowed. - _Stefan Steinerberger_, May 02 2008
%t q=8;s="";For[i=1,i<12^2,p=Prime[i];a=0;For[j=2,j<=q,If[PrimeQ[p-j]||PrimeQ[p+j], a=1;Break[]];j=j+2];If[a==0,s=s<>ToString[p]<>","];i++ ];Print[s]
%t Prime[Select[Range[2, 1500], Prime[ # - 1] + 8 < Prime[ # ] < Prime[ # + 1] - 8 &]] (* _Stefan Steinerberger_, May 02 2008 *)
%t Select[Partition[Prime[Range[600]],3,1],Min[Differences[#]]>8&][[All,2]] (* _Harvey P. Dale_, Aug 28 2022 *)
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 29 2008
%E More terms from _Stefan Steinerberger_, May 02 2008
%E Description edited by _Ray Chandler_, May 02 2009