This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137821 Numbers n such that sum( Catalan(k), k=1..2n) = 0 (mod 3). 7

%I

%S 1,4,6,13,15,18,19,40,42,45,46,54,55,58,60,121,123,126,127,135,136,

%T 139,141,162,163,166,168,175,177,180,181,364,366,369,370,378,379,382,

%U 384,405,406,409,411,418,420,423,424,486,487,490,492,499,501,504,505

%N Numbers n such that sum( Catalan(k), k=1..2n) = 0 (mod 3).

%C It would be natural to pre-pend an initial term a(1)=0 (for which the sum is to be considered empty, thus zero), but we omit it to avoid confusion w.r.t. indices of A107755.

%H M. F. Hasler, <a href="/A137821/b137821.txt">Table of n, a(n) for n=1,...,499</a>.

%F a(n) = A107755(n)/2 = sum( A137822(k), k=0..n)

%F a(2^j) = 2 a(2^j-1) + 1 (resp. +2) for j even (resp. odd).

%F sum( Catalan(k), k=1..2n) = sum( Catalan(2k-1) * (10k-1)/(2k+1), k=1..n), thus:

%F { a(m) } = { n>0 | sum( Catalan(2k-1) * (10k-1)/(2k+1), k=1..n) = 0 (mod 3) }.

%o (PARI) n=0; A137821=vector(499,i,{ if( bitand(i,i-1), while(n++ & s+=binomial(4*n-2,2*n-1)/(2*n)*(10*n-1)/(2*n+1),),s=Mod(0,3); n=2*n+1+log(i+.5)\log(2)%2 ); n})

%Y Cf. A107755 (twice this), A137822-A137824.

%K nonn

%O 1,2

%A _M. F. Hasler_, Feb 25 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 07:03 EDT 2019. Contains 321481 sequences. (Running on oeis4.)