login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137812 Left- or right-truncatable primes. 6
2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 113, 131, 137, 139, 167, 173, 179, 197, 223, 229, 233, 239, 271, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 397, 431, 433, 439, 443, 467, 479, 523, 547, 571 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Repeatedly removing a digit from either the left or right produces only primes. There are 149677 terms in this sequence, ending with 8939662423123592347173339993799.

REFERENCES

Angell, I. O. and Godwin, H. J. "On Truncatable Primes." Math. Comput. 31, 265-267, 1977.

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

T. D. Noe, Plot of all terms

Carlos Rivera, Puzzle 2: Prime Strings

Eric Weisstein, MathWorld: Truncatable Prime

Index entries for sequences related to truncatable primes

EXAMPLE

139 is here because (removing 9 from the right) 13 is prime and (removing 1 from the left) 3 is prime.

MATHEMATICA

Clear[s]; s[0]={2, 3, 5, 7}; n=1; While[s[n]={}; Do[k=s[n-1][[i]]; Do[p=j*10^n+k; If[PrimeQ[p], AppendTo[s[n], p]], {j, 9}]; Do[p=10*k+j; If[PrimeQ[p], AppendTo[s[n], p]], {j, 9}], {i, Length[s[n-1]]}]; s[n]=Union[s[n]]; Length[s[n]]>0, n++ ]; t=s[0]; Do[t=Join[t, s[i]], {i, n}]; t

CROSSREFS

Cf. A024770 (right-truncatable primes), A024785 (left-truncatable primes), A077390 (left-and-right truncatable primes), A080608.

Sequence in context: A234851 A179336 A080608 * A216578 A094317 A074834

Adjacent sequences:  A137809 A137810 A137811 * A137813 A137814 A137815

KEYWORD

base,fini,nonn

AUTHOR

T. D. Noe, Feb 11 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 18 14:05 EDT 2014. Contains 240720 sequences.