This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137812 Left- or right-truncatable primes. 8
 2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 113, 131, 137, 139, 167, 173, 179, 197, 223, 229, 233, 239, 271, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 397, 431, 433, 439, 443, 467, 479, 523, 547, 571 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Repeatedly removing a digit from either the left or right produces only primes. There are 149677 terms in this sequence, ending with 8939662423123592347173339993799. LINKS T. D. Noe, Table of n, a(n) for n=1..10000 I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977. T. D. Noe, Plot of all terms Carlos Rivera, Puzzle 2: Prime Strings Eric Weisstein, MathWorld: Truncatable Prime EXAMPLE 139 is here because (removing 9 from the right) 13 is prime and (removing 1 from the left) 3 is prime. MATHEMATICA Clear[s]; s[0]={2, 3, 5, 7}; n=1; While[s[n]={}; Do[k=s[n-1][[i]]; Do[p=j*10^n+k; If[PrimeQ[p], AppendTo[s[n], p]], {j, 9}]; Do[p=10*k+j; If[PrimeQ[p], AppendTo[s[n], p]], {j, 9}], {i, Length[s[n-1]]}]; s[n]=Union[s[n]]; Length[s[n]]>0, n++ ]; t=s[0]; Do[t=Join[t, s[i]], {i, n}]; t CROSSREFS Cf. A024770 (right-truncatable primes), A024785 (left-truncatable primes), A077390 (left-and-right truncatable primes), A080608. Sequence in context: A179336 A080608 A305352 * A216578 A094317 A074834 Adjacent sequences:  A137809 A137810 A137811 * A137813 A137814 A137815 KEYWORD base,fini,nonn AUTHOR T. D. Noe, Feb 11 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 02:33 EST 2019. Contains 320200 sequences. (Running on oeis4.)