This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137782 a(n) = the number of permutations (p(1), p(2), ..., p(n)) of (1,2,...,n) where, for each k (2 <= k <= n), the sign of (p(k) - p(k-1)) equals the sign of (p(n+2-k) - p(n+1-k)). 3
 1, 1, 2, 2, 12, 24, 200, 540, 6160, 21616, 306432, 1310880, 22338624, 113017696, 2245983168, 13108918368, 297761967360, 1969736890624, 50332737128960, 372125016868608, 10565549532009472, 86337114225206784, 2696451226217269248, 24132714802787013632 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of order n permutations whose descent set is invariant w.r.t. the function f(x) = n-x. - Max Alekseyev, May 06 2009 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..190 FORMULA a(2n) = A000984(n)*A060350(n). - Max Alekseyev, Apr 23 2009 EXAMPLE Consider the permutation (for n = 7): 3,6,7,5,1,2,4 The signs of the differences between adjacent terms form the sequence: ++--++, which has reflective symmetry. So this permutation, among others, is counted when n = 7. MAPLE b:= proc(u, o, h) option remember; `if`(u+o=0, 1,       add(add(b(u-j, o+j-1, h+i-1), i=1..u+o-h), j=1..u)+       add(add(b(u+j-1, o-j, h-i), i=1..h), j=1..o))     end: a:= proc(n) option remember; local r;      `if`(irem(n, 2, 'r')=0, b(0, r\$2)*binomial(n, r),       add(add(binomial(j-1, i)*binomial(n-j, r-i)*       b(r-i, i, n-j-r+i), i=0..min(j-1, r)), j=1..n))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2015 PROG (PARI) { a(n) = local(r, u, c, t); r=0; forvec(v=vector(n-1, i, [2*i==n, 1]), u=sum(i=1, #v, v[i]); c=sum(i=1, (n-1)\2, !v[i]&&!v[n-i]); t=[0]; for(i=1, #v, if(v[i], t=concat(t, [i]))); r += (-1)^u * 2^c * n! \ prod(i=2, #t, (t[i]-t[i-1])!) \ (n-t[ #t])! ); (-1)^(n+1)*r } \\ Max Alekseyev, May 06 2009 CROSSREFS Cf. A137783. Sequence in context: A303537 A164961 A122007 * A131384 A052612 A287951 Adjacent sequences:  A137779 A137780 A137781 * A137783 A137784 A137785 KEYWORD nonn AUTHOR Leroy Quet, Feb 10 2008 EXTENSIONS First 8 terms calculated by Olivier Gérard Extended by Max Alekseyev, May 06 2009 a(0), a(22) from Alois P. Heinz, Jul 02 2015 a(23) from Alois P. Heinz, Sep 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 05:24 EDT 2018. Contains 316336 sequences. (Running on oeis4.)