This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137696 Triangular sequence of coefficients from a polynomial recursion: p(x,n)=p(x,Floor[(n-1)/2])-x^2*p(x,n-3)+x. 0
 1, 0, 1, 0, 1, 1, 0, 2, -1, 0, 2, 0, -1, 0, 2, 1, -1, -1, 0, 2, 1, -2, 1, 0, 3, -1, -2, 0, 1, 0, 3, -1, -2, -1, 1, 1, 0, 3, 0, -3, -1, 2, -1, 0, 3, 0, -4, 1, 2, 0, -1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS Row sums are: {1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, ...} LINKS FORMULA p(x,n)=p(x,Floor[(n-1)/2])-x^2*p(x,n-3)+x; out_n,m=Coefficient(p(x,n)). EXAMPLE {1}, {0, 1}, {0, 1, 1}, {0, 2, -1}, {0, 2, 0, -1}, {0, 2, 1, -1, -1}, {0, 2, 1, -2, 1}, {0, 3, -1, -2, 0, 1}, {0, 3, -1, -2, -1,1, 1}, {0, 3, 0, -3, -1, 2, -1}, {0, 3, 0, -4, 1, 2, 0, -1} MATHEMATICA Clear[p, x]; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = x; p[x, 2] = x^2 + x; p[x_, n_] := p[x, n] = p[x, Floor[(n - 1)/2]] - x^2*p[x, n - 3] + x; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]; CROSSREFS Sequence in context: A033792 A033768 A033786 * A275731 A143614 A071412 Adjacent sequences:  A137693 A137694 A137695 * A137697 A137698 A137699 KEYWORD tabl,sign AUTHOR Roger L. Bagula, Apr 27 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 01:33 EST 2019. Contains 319351 sequences. (Running on oeis4.)