login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137695 Tower of Hanoi with p pegs: Number of moves needed for n disks, using Frame's or Stewart's algorithm (formatted as upper right triangle). 1
1, 3, 3, 7, 5, 5, 15, 9, 7, 7, 31, 13, 11, 9, 9, 63, 17, 15, 13, 11, 11, 127, 25, 19, 17, 15, 13, 13, 255, 33, 23, 21, 19, 17, 15, 15, 511, 41, 27, 25, 23, 21, 19, 17, 17, 1023, 49, 31, 29, 27, 25, 23, 21, 19, 19, 2047, 65, 39, 33, 31, 29, 27, 25, 23, 21, 21, 4095, 81, 47, 37, 35 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

In the cited paper by Klavzar et al. it is proved that Frame's algorithm and Stewart's algorithm, as well as several variations, all yield the same number of minimal moves for the n disk, p peg problem, given by the formula for X(n,p).

This sequence lists the elements of the upper right triangle of the matrix having as rows the number of moves required, depending on the number of disks, for a given number of pegs. (The first row refers to 3 pegs, etc.) The lower left triangle of the matrix is uninteresting, since all elements below a given diagonal element are equal to that element, namely 2n-1. (For p>n, each disk can be moved to a separate peg.)

LINKS

Table of n, a(n) for n=1..71.

S. Klavzar et al., On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem, Discrete Applied Mathematics 120 (2002) 141-15 and references therein.

FORMULA

X(n,p) = Sum_{t=0..s-1} 2^t*binomial(p-3+t,p-3) + 2^s*(n-binomial(p-3+s,p-2)) where s = max { k in Z | n > binomial(p-3+k,p-2) }.

EXAMPLE

The complete matrix would read:

  1 3 7 15 31 63 127 255 511 1023 ...

  1 3 5  9 13 17  25  33  41   49 ...

  1 3 5  7 11 15  19  23  27   31 ...

  1 3 5  7  9 13  17  21  25   29 ...

  1 3 5  7  9 11  15  19  23   27 ...

  1 3 5  7  9 11  13  17  21   25 ...

  1 3 5  7  9 11  13  15  19   23 ...

  1 3 5  7  9 11  13  15  17   21 ...

  1 3 5  7  9 11  13  15  17   19 ...

(first row: 3 pegs, A000225; 2nd row: 4 pegs, A007664; 3rd row: 5 pegs, A007665).

MATHEMATICA

s[n_, p_] := (k = 0; While[ n > Binomial[p - 3 + k++, p - 2] ] ; k - 2); x[n_, p_] := (snp = s[n, p]; Sum[2^t*Binomial[p - 3 + t, p - 3], {t, 0, snp - 1}] + 2^snp*(n - Binomial[p - 3 + snp, p - 2])); Flatten[Table[x[n, p], {n, 1, 12}, {p, 3, n + 2}] ] (* Jean-Fran├žois Alcover, Jun 01 2011 *)

PROG

(PARI) X(n, p)={local(s=1, t=0); while( n>binomial(p-2+t++, p-2), s+=2^t*binomial(p-3+t, p-3)); s+2^t*(n-binomial(p-3+t, p-2))}

A137695(n)=X(t=1+sqrtint(2*n-2-sqrtint(2*n-2)), 2+n-t*(t-1)/2)

CROSSREFS

Cf. A000225, A007664, A007665.

Sequence in context: A118362 A258273 A205680 * A209085 A086799 A218388

Adjacent sequences:  A137692 A137693 A137694 * A137696 A137697 A137698

KEYWORD

easy,nice,nonn,tabl

AUTHOR

M. F. Hasler, Feb 09 2008, revised Feb 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 18:00 EST 2018. Contains 299469 sequences. (Running on oeis4.)