



1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 6, 1, 0, 0, 1, 11, 3, 2, 0, 0, 1, 12, 2, 1, 0, 0, 0, 1, 20, 6, 1, 2, 0, 0, 0, 1, 25, 4, 3, 1, 0, 0, 0, 0, 1, 37, 9, 2, 1, 2, 0, 0, 0, 0, 1, 43, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1, 70, 16, 6, 3, 1, 2, 0, 0, 0, 0, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

That is, regard A051731 and A026794 as lower triangular square matrices and multiply them, then take the lower triangle of the product,
Left column = A083710 starting (1, 2, 3, 5, 6, 11, 12,...). Row sums = A047968.


LINKS

Table of n, a(n) for n=1..78.


FORMULA

Inverse mobius transform of the partition triangle, A026794


EXAMPLE

First few rows of the triangle are:
.1;
.2, 1;
.3, 0, 1;
.5, 2, 0, 1;
.6, 1, 0, 0, 1;
.11, 3, 2, 0, 0, 1;
.12, 2, 1, 0, 0, 0, 1;
.20, 6, 1, 2, 0, 0, 0, 1;
.25, 4, 3, 1, 0, 0, 0, 0, 1;
....


CROSSREFS

Cf. A026794, A051731, A083710, A047968.
Sequence in context: A195665 A096798 A158902 * A168021 A137639 A239631
Adjacent sequences: A137584 A137585 A137586 * A137588 A137589 A137590


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Jan 27 2008


EXTENSIONS

Typo in 9th row corrected by M. F. Hasler, Jun 08 2009


STATUS

approved



