This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137543 Number of permutations in S_n avoiding {bar 1}3245 (i.e., every occurrence of 3245 is contained in an occurrence of a 13245). 1
1, 2, 6, 23, 104, 534, 3060, 19445, 136976, 1072110, 9344781, 90711178, 977610989, 11627993555, 151488021053 (list; graph; refs; listen; history; text; internal format)



From Lara Pudwell, Oct 23 2008: (Start)

A permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b.

Barred pattern avoidance considers permutations that avoid a pattern except in a special case. Given a barred pattern q, we may form two patterns, q1 = the sequence of unbarred letters of q and q2 = the sequence of all letters of q.

A permutation p avoids barred pattern q if every instance of q1 in p is embedded in a copy of q2 in p. In other words, p avoids q1, except in the special case that a copy of q1 is a subsequence of a copy of q2.

For example, if q = 5{bar 1}32{bar 4}, then q1 = 532 and q2 = 51324. p avoids q if every for decreasing subsequence acd of length 3 in p, one can find letters b and e so that the subsequence abcde of p has b < d < c < e < a. (End)


Table of n, a(n) for n=1..15.

Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.

L. Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.


See example in A137546.


Sequence in context: A137540 A137541 A137542 * A137544 A137545 A137546

Adjacent sequences:  A137540 A137541 A137542 * A137544 A137545 A137546




Lara Pudwell, Apr 25 2008


a(8)-(15) from Lars Blomberg, Jun 05 2018



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 22:19 EDT 2019. Contains 324145 sequences. (Running on oeis4.)