OFFSET
1,3
COMMENTS
Row sums: {0, 0, -4, -12, -96, -400, -4020, -22764, -287392, -2065536, -31464900}.
Because of the 4th power in generator function nothing shows up until n=3.
LINKS
Francisco J. Lopez, Francisco Martin, Complete minimal surfaces in R^3, April 11 2000, see pdf page 11
FORMULA
p(x,t)=Exp(x*g*(t))*(1-f(t)^2);f(t)=1/Sqrt[1 - 2*t^2 + t^4];g(t)=t; p(x,t)=Sum[P(x,n)*t^n/n!,{n,0,Infinity}]; Out_n,m=(n!)*Coefficients(P(x,n).
EXAMPLE
{0},
{0},
{-4},
{0, -12},
{-72, 0, -24},
{0, -360,0, -40},
{-2880, 0, -1080, 0, -60},
{0, -20160, 0, -2520, 0, -84},
{-201600, 0, -80640, 0, -5040, 0, -112},
{0, -1814400, 0, -241920, 0, -9072, 0, -144},
{-21772800, 0, -9072000, 0, -604800, 0, -15120, 0, -180}
MATHEMATICA
Clear[p, f, g] g[t_] = t; f[t] = 1/Sqrt[1 - 2*t^2 + t^4]; p[t_] = Exp[x*g[t]]*(1 - f[t]^2); g = Table[ ExpandAll[(n!/3)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!/3)*SeriesCoefficient[ FullSimplify[Series[p[t], {t, 0, 30}]], n], x], {n, 0, 10}]; Flatten[a]
CROSSREFS
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Apr 24 2008
STATUS
approved