login
Inverse binomial transform of 1, 2, 2, 4, 10, 20, ... = A100088.
6

%I #14 Dec 24 2015 18:50:09

%S 1,1,-1,3,-1,-1,7,-9,7,7,-25,39,-25,-25,103,-153,103,103,-409,615,

%T -409,-409,1639,-2457,1639,1639,-6553,9831,-6553,-6553,26215,-39321,

%U 26215,26215,-104857,157287,-104857,-104857,419431

%N Inverse binomial transform of 1, 2, 2, 4, 10, 20, ... = A100088.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (-1,0,2)

%F a(n)=[3+(1-2i)(i-1)^n+(1+2i)(-1-i)^n]/5 where i=sqrt(-1). - _R. J. Mathar_, Apr 25 2008

%F O.g.f.: -(1+2x)/((1+2x+2x^2)(-1+x)). - _R. J. Mathar_, Apr 25 2008

%F a(n+1)-a(n)=A090132(n+1). - _R. J. Mathar_, Apr 25 2008

%F G.f.: Q(0)*(1+2*x)/(2- 2*x), where Q(k) = 1 + 1/(1 - x*(4*k+2 +2*x)/(x*(4*k+4 +2*x) - 1/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 01 2014

%K sign,easy

%O 0,4

%A _Paul Curtz_, Apr 20 2008

%E More terms from _R. J. Mathar_, Apr 25 2008