This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137454 A triangular sequence from coefficients of a three deep quadratic polynomial recursion: p(x,n)=x^2*p(x,n-1)+(-x-1)*p(x,n-2)+p(x,n-3). 0
 1, -1, -1, 1, -1, -1, -1, -1, 1, 2, 2, -1, -2, -1, -1, 1, 0, 1, 5, 4, -1, -3, -1, -1, 1, -3, -5, -2, 3, 9, 6, -1, -4, -1, -1, 1, 2, 1, -10, -16, -6, 6, 14, 8, -1, -5, -1, -1, 1, 3, 9, 14, 4, -23, -34, -12, 10, 20, 10, -1, -6, -1, -1, 1, -5, -8, 10, 38, 45, 10, -44, -60, -20, 15, 27, 12, -1, -7, -1, -1, 1, -1, -11, -38, -42, 23, 101, 105, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,10 COMMENTS Row sums are r() = 1, -1, -3, 0, 5, 2, -8, -7, 11, 17, -12, -35, 6, 64, 17, -105, -75, 152, 197, -182, -424... with r(n)=r(n-1)-2*r(n-2)+r(n-3). The row sums appear to be a saw tooth alternating sequence. LINKS FORMULA p(x,-1)=0;p(x,0)=1;p(x,1)=x^2-x-2; p(x,n)=x^2*p(x,n-1)+(-x-1)*p(x,n-2)+p(x,n-3). EXAMPLE {1}, {-1, -1, 1}, {-1, -1, -1, -1, 1}, {2, 2, -1, -2, -1, -1, 1}, {0, 1, 5, 4, -1, -3, -1, -1, 1}, {-3, -5, -2, 3,9, 6, -1, -4, -1, -1, 1}, {2, 1, -10, -16, -6, 6,14, 8, -1, -5, -1, -1, 1}, {3, 9,14, 4, -23, -34, -12, 10, 20, 10, -1, -6, -1, -1, 1}, {-5, -8, 10, 38, 45, 10, -44, -60, -20, 15,27, 12, -1, -7, -1, -1, 1}, {-1, -11, -38, -42, 23, 101, 105,20, -75, -95, -30, 21, 35, 14, -1, -8, -1, -1,1}, {8, 22, 11, -55, -144, -131, 45, 215, 205, 35, -118, -140, -42, 28, 44, 16, -1, -9, -1, -1, 1} MATHEMATICA Clear[A, x, p] p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = x^2 - x - 1; p[x_, n_] := x^2*p[x, n - 1] + (-x - 1)*p[x, n - 2] + p[x, n - 3]; Table[Expand[p[x, n]], {n, 0, 10}]; a1 = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a1] CROSSREFS Cf. A084610. Sequence in context: A221649 A090406 A152723 * A030613 A092984 A086600 Adjacent sequences:  A137451 A137452 A137453 * A137455 A137456 A137457 KEYWORD tabf,uned,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Apr 18 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .