login
Partial sums of partial sums of PrimePi(k).
1

%I #15 Oct 07 2021 20:45:09

%S 0,1,4,9,17,28,43,62,85,112,144,181,224,273,328,389,457,532,615,706,

%T 805,912,1028,1153,1287,1430,1582,1743,1914,2095,2287,2490,2704,2929,

%U 3165,3412,3671,3942,4225,4520,4828,5149,5484,5833,6196,6573,6965,7372,7794

%N Partial sums of partial sums of PrimePi(k).

%H Alois P. Heinz, <a href="/A137441/b137441.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Harvey P. Dale)

%F a(n) = partial sum of A046992 = partial sum of partial sum of PrimePi(k) = partial sum of partial sum of A000720(k) = Sum_{j=1..n} (Sum_{k=1..j} PrimePi(k)).

%F a(n) = Sum_{i=1..n} (n+1-i)*pi(i), where pi = A000720. - _Ridouane Oudra_, Aug 31 2019

%p A000720 := proc(n) option remember ; numtheory[pi](n) ; end: A046992 := proc(n) option remember ; add( A000720(i),i=1..n) ; end: A137441 := proc(n) add( A046992(i),i=1..n) ; end: seq(A137441(n),n=1..80) ; # _R. J. Mathar_, Apr 23 2008

%p # second Maple program:

%p b:= proc(n) option remember; `if`(n<1, [0$2],

%p (p-> p+[numtheory[pi](n+1), p[1]])(b(n-1)))

%p end:

%p a:= n-> b(n)[2]:

%p seq(a(n), n=1..49); # _Alois P. Heinz_, Oct 07 2021

%t Accumulate[Accumulate[PrimePi[Range[50]]]] (* _Harvey P. Dale_, Feb 17 2013 *)

%Y Cf. A000720, A046992.

%K easy,nonn

%O 1,3

%A _Jonathan Vos Post_, Apr 17 2008

%E More terms from _R. J. Mathar_, Apr 23 2008