%I #21 Dec 29 2024 22:31:17
%S 1,144,1444,1666681,111112681,3333330225,132922222225,1433333333961,
%T 2582708888888881,28777777777780164,88888888888905609,
%U 55555555555566005625,2222222222222640225,4777777777777776827176356,20193204988888888888888804,174881683455555555555555556,175246811111111111111111080489,9935069953444444444444444444176
%N a(n) = smallest nontrivial square (i.e., not a multiple of 10) with exactly n identical adjacent digits.
%C Since a(13) < a(12), a(13) is actually the smallest nontrivial square with at least 12 identical adjacent digits (cf. A169859), while a(12) is the smallest containing 12, but not more than 12, identical adjacent digits. - _Jon E. Schoenfield_, May 16 2010
%C a(n) >= A169859(n) with equality taking place when A169859(n) contains exactly n identical adjacent digits. - _Max Alekseyev_, Dec 29 2024
%e a(3) = 1444 because it has 3 adjacent 4's, and no square less than 1444 has 3 adjacent digits which are the same.
%Y Cf. A169859.
%K nonn,base
%O 1,2
%A _Randy L. Ekl_, Apr 15 2008
%E a(11) from _Donovan Johnson_, May 08 2010
%E a(12)-a(14) from _Jon E. Schoenfield_, May 16 2010
%E a(15)-a(18) from _Max Alekseyev_, Dec 29 2024