login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137401 a(n) is the number of ordered solutions (x,y,z) to x^3 + y^3 == z^3 mod n with 1 <= x,y,z <= n-1. 2
0, 0, 2, 7, 12, 20, 0, 63, 116, 72, 90, 131, 0, 108, 182, 339, 240, 602, 324, 415, 326, 420, 462, 839, 604, 216, 1808, 763, 756, 812, 810, 1735, 992, 1056, 1092, 3311, 648, 1620, 650, 2511, 1560, 1640, 1134, 2227, 4328, 1980, 2070, 3683, 2484, 2644, 2450, 1519 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Record values of A137401: 0, 2, 7, 12, 20, 63, 116, 131, 182, 339, 602, 839, 1808, 3311, 4328, 7964, 8864, 9231, 19583, 21986, 41363, 52676, 81467, 87596, 92087, 112616, 236951, 247940, 378071, 386423, 521135, ... - Robert G. Wilson v

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..425 from Robert G. Wilson v)

FORMULA

a(n) = A063454(n)-3*A087786(n)+3*A000189(n)-1. - Vladeta Jovovic, Apr 11 2008

EXAMPLE

a(4)=7 because (1, 2, 1), (1, 3, 2), (2, 1, 1), (2, 2, 2), (2, 3, 3), (3, 1, 2), (3, 2, 3) are solutions for n=4.

MATHEMATICA

f[n_] := Block[ {c = 0}, Do[ If[ Mod[x^3 + y^3, n] == Mod[z^3, n], c++ ], {x, n - 1}, {y, n - 1}, {z, n - 1}]; c];

Table[Length[Select[Tuples[Range[n - 1], 3], Mod[ #[[1]]^3 + #[[2]]^3 - #[[3]]^3, n] == 0 &]], {n, 2, 50}] (* Stefan Steinerberger, Apr 12 2008 *)

PROG

(Python)

def A137401(n):

    ndict = {}

    for i in range(1, n):

        m = pow(i, 3, n)

        if m in ndict:

            ndict[m] += 1

        else:

            ndict[m] = 1

    count = 0

    for i in ndict:

        ni = ndict[i]

        for j in ndict:

            k = (i+j) % n

            if k in ndict:

                count += ni*ndict[j]*ndict[k]

    return count # Chai Wah Wu, Jun 06 2017

CROSSREFS

Cf. A063454.

Sequence in context: A188039 A133459 A023669 * A119713 A213041 A135541

Adjacent sequences:  A137398 A137399 A137400 * A137402 A137403 A137404

KEYWORD

nonn

AUTHOR

Neven Juric (neven.juric(AT)apis-it.hr), Apr 11 2008

EXTENSIONS

More terms from Stefan Steinerberger and Robert G. Wilson v, Apr 12 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 15 01:00 EST 2017. Contains 296020 sequences.