This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137401 a(n) is the number of ordered solutions (x,y,z) to x^3 + y^3 == z^3 mod n with 1 <= x,y,z <= n-1. 2
 0, 0, 2, 7, 12, 20, 0, 63, 116, 72, 90, 131, 0, 108, 182, 339, 240, 602, 324, 415, 326, 420, 462, 839, 604, 216, 1808, 763, 756, 812, 810, 1735, 992, 1056, 1092, 3311, 648, 1620, 650, 2511, 1560, 1640, 1134, 2227, 4328, 1980, 2070, 3683, 2484, 2644, 2450, 1519 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Record values of A137401: 0, 2, 7, 12, 20, 63, 116, 131, 182, 339, 602, 839, 1808, 3311, 4328, 7964, 8864, 9231, 19583, 21986, 41363, 52676, 81467, 87596, 92087, 112616, 236951, 247940, 378071, 386423, 521135, ... - Robert G. Wilson v LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..425 from Robert G. Wilson v) FORMULA a(n) = A063454(n)-3*A087786(n)+3*A000189(n)-1. - Vladeta Jovovic, Apr 11 2008 EXAMPLE a(4)=7 because (1, 2, 1), (1, 3, 2), (2, 1, 1), (2, 2, 2), (2, 3, 3), (3, 1, 2), (3, 2, 3) are solutions for n=4. MATHEMATICA f[n_] := Block[ {c = 0}, Do[ If[ Mod[x^3 + y^3, n] == Mod[z^3, n], c++ ], {x, n - 1}, {y, n - 1}, {z, n - 1}]; c]; Table[Length[Select[Tuples[Range[n - 1], 3], Mod[ #[[1]]^3 + #[[2]]^3 - #[[3]]^3, n] == 0 &]], {n, 2, 50}] (* Stefan Steinerberger, Apr 12 2008 *) PROG (Python) def A137401(n):     ndict = {}     for i in range(1, n):         m = pow(i, 3, n)         if m in ndict:             ndict[m] += 1         else:             ndict[m] = 1     count = 0     for i in ndict:         ni = ndict[i]         for j in ndict:             k = (i+j) % n             if k in ndict:                 count += ni*ndict[j]*ndict[k]     return count # Chai Wah Wu, Jun 06 2017 CROSSREFS Cf. A063454. Sequence in context: A188039 A133459 A023669 * A119713 A213041 A135541 Adjacent sequences:  A137398 A137399 A137400 * A137402 A137403 A137404 KEYWORD nonn AUTHOR Neven Juric (neven.juric(AT)apis-it.hr), Apr 11 2008 EXTENSIONS More terms from Stefan Steinerberger and Robert G. Wilson v, Apr 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.