login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137381 Triangular sequence of coefficients from expansion of Narumi polynomials: generated by: p(x) = (t/log(1 + t))^a0*(1 + t)^x; a0=2; weights (n+1)!*n!. 0
1, 2, 2, 1, 6, 6, 0, -12, 0, 24, -12, 120, 0, -240, 120, 360, -2280, 0, 4800, -3600, 720, -13260, 68040, 0, -151200, 138600, -45360, 5040, 638400, -2899680, 0, 6773760, -7056000, 2963520, -564480, 40320, -39630528, 166320000, 0, -406425600, 464002560, -228614400, 57576960, -7257600, 362880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sums are: {1, 4, 13, 12, -12, 0, 1860, -104160, 6334272, -465212160, 41650459200}

p(n,x,alpha) = sum(i=0..n, (sum(k=1..i, binomial(k+alpha-1,alpha-1) *sum(j=0..k, ((-1)^j*j!*stirling1(j+i,j) *binomial(k,j))/(j+i)!))) *binomial(x,n-i)). - Vladimir Kruchinin, Jan 12 2012

REFERENCES

Weisstein, Eric W. "Narumi Polynomial." http://mathworld.wolfram.com/NarumiPolynomial.html

LINKS

Table of n, a(n) for n=1..45.

V. Kruchinin, D. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, arXiv: 1211.0099

FORMULA

p(x) = (t/Log[1 + t])^a0*(1 + t)^x; a0=2;weights (n+1)!*n!;

T(n,r) = n!*(n+1)!*sum(i=0..n,((sum(k=1..i, (k+1)*sum(j=0..k,((-1)^j*j! * stirling1(j+i,j)* C(k,j))/(j+i)!) ))*stirling1(n-i,k))/(n-i)!). - Vladimir Kruchinin, Jan 12 2012

EXAMPLE

{1},

{2, 2},

{1, 6, 6},

{0, -12, 0, 24},

{-12, 120, 0, -240, 120},

{360, -2280, 0, 4800, -3600, 720},

{-13260, 68040, 0, -151200, 138600, -45360, 5040},

{638400, -2899680, 0, 6773760, -7056000, 2963520, -564480, 40320}

MATHEMATICA

Clear[p, x, t, a0] a0 = 2; p[t_] = (t/Log[1 + t])^a0*(1 + t)^x; Table[ ExpandAll[(n!*(n + 1)!)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!*(n + 1)!)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

PROG

(Maxima) T(n, r):=n!*(n+1)!*sum(((sum((k+1)*sum(((-1)^j*j!*stirling1(j+i, j)* binomial(k, j))/(j+i)!, j, 0, k) , k, 1, i))*stirling1(n-i, k))/(n-i)!, i, 0, n); /* Vladimir Kruchinin, Jan 12 2012 */

CROSSREFS

Sequence in context: A125278 A134558 A230420 * A109316 A162980 A162979

Adjacent sequences:  A137378 A137379 A137380 * A137382 A137383 A137384

KEYWORD

uned,tabl,sign

AUTHOR

Roger L. Bagula, Apr 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 05:47 EDT 2019. Contains 325213 sequences. (Running on oeis4.)