login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 3*a(n-1) + 7*a(n-2), with a(1) = 1, a(2) = 10.
1

%I #21 Jan 15 2025 10:23:55

%S 1,10,37,181,802,3673,16633,75610,343261,1559053,7079986,32153329,

%T 146019889,663132970,3011538133,13676545189,62110402498,282067023817,

%U 1280973888937,5817390833530,26418989723149,119978705004157,544869043074514,2474458064252641,11237457494279521

%N a(n) = 3*a(n-1) + 7*a(n-2), with a(1) = 1, a(2) = 10.

%C a(n) == 1 mod 9.

%C a(n)/a(n-1) tends to 4.54138126... = (3 + sqrt(37))/2.

%H Andrew Howroyd, <a href="/A137280/b137280.txt">Table of n, a(n) for n = 1..500</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,7)

%F a(1) = 1, a(2) = 10, a(n) = 3*a(n-1) + 7*a(n-2) for n>2.

%F a(n) = upper left term in [1,3; 3,2]^n

%F From _R. J. Mathar_, Mar 17 2008: (Start)

%F O.g.f.: x*(1+7*x)/(1-3*x-7*x^2).

%F a(n) = A015524(n) + 7*A015524(n-1). (End)

%e a(4) = 181 = 3*a(3) + 7*a(2) = 3*37 + 7*10.

%e a(4) = 181 = upper left term in [1,3; 3,2]^4.

%t LinearRecurrence[{3, 7}, {1, 10}, 25] (* _Paolo Xausa_, Jan 15 2025 *)

%K nonn,easy

%O 1,2

%A _Gary W. Adamson_, Mar 14 2008

%E a(23) onwards from _Andrew Howroyd_, Jan 12 2025