OFFSET
1,1
COMMENTS
Each of the primes p = 2,3,5,7,13 has the property that the quadratic polynomial phi(x) = x^2 + x - p^2 takes on only prime values for x = 1,2,...,2p-2; each case giving exactly one repetition, in phi(p-1) = -p and phi(p) = p.
REFERENCES
F. G. Frobenius, Uber quadratische Formen, die viele Primzahlen darstellen, Sitzungsber. d. Konigl. Acad. d. Wiss. zu Berlin, 1912, 966 - 980.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
The (2 x 7 - 2) -1 = 11 primes given by the polynomial x^2 + x - 7^2 for x = 1, 2, ..., 2 x 7 - 2 are -47, -43, -37, -29, -19, -7, 7, 23, 41, 61, 83, 107.
MAPLE
isA028879 := proc(n) isprime(n^2-6) ; end: isA137270 := proc(n) isprime(n) and isA028879(n) ; end: for i from 1 to 300 do if isA137270(ithprime(i)) then printf("%d, ", ithprime(i)) ; fi ; od: # R. J. Mathar, Mar 16 2008
MATHEMATICA
Select[Prime[Range[2, 300]], PrimeQ[#^2-6]&] (* Harvey P. Dale, Jul 24 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(1350) | IsPrime(p^2-6)]; // Vincenzo Librandi, Apr 14 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ben de la Rosa and Johan Meyer (meyerjh.sci(AT)ufa.ac.za), Mar 13 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Mar 16 2008
STATUS
approved