login
Chung-Graham juggling polynomials as a triangular sequence of positive coefficients.
2

%I #12 Mar 27 2019 18:58:07

%S 1,1,1,2,2,2,3,3,4,6,4,4,6,12,24,5,5,8,18,48,120,6,6,10,24,72,240,720,

%T 7,7,12,30,96,360,1440,5040,8,8,14,36,120,480,2160,10080,40320,9,9,16,

%U 42,144,600,2880,15120,80640,362880

%N Chung-Graham juggling polynomials as a triangular sequence of positive coefficients.

%C Row sums are {1, 2, 6, 16, 50, 204, 1078, 6992, 53226, 462340,..} which is A014144(n) - 1 for n>=2.

%C Row sums are given by (n+1)* !n - !(n+1), for n>=2, where !n is the left factorial (A003422). - _G. C. Greubel_, Mar 27 2019

%H G. C. Greubel, <a href="/A137267/b137267.txt">Rows n=1..100 of triangle, flattened</a>

%H Fan Chung, R. L. Graham, <a href="http://www.jstor.org/stable/27642443">Primitive juggling sequences</a>, Am. Math. Monthly 115 (3) (2008) 185-194

%F Given f_b(x) = (1 - Sum_{k=0..n-1} (n-k)*k!*x^k)/(1-(b+1)*x), then

%F p(x,b) = -f_b(x)*(1-(b+1)*x) = -(1 - Sum_{k=0..n-1} (n-k)*k!*x^k ).

%e Triangle begins with:

%e 1;

%e 1, 1;

%e 2, 2, 2;

%e 3, 3, 4, 6;

%e 4, 4, 6, 12, 24;

%e 5, 5, 8, 18, 48, 120;

%e 6, 6, 10, 24, 72, 240, 720;

%e 7, 7, 12, 30, 96, 360, 1440, 5040;

%e 8, 8, 14, 36, 120, 480, 2160, 10080, 40320;

%e 9, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880;

%t p[x_, n_]:= If[n == 1, 1, -(1 - Sum[(n-k)*k!*x^k, {k, 0, n-1}])]; Table[CoefficientList[p[x, n], x], {n, 1, 10}]//Flatten

%Y Cf. A137948.

%K nonn,tabl

%O 1,4

%A _Roger L. Bagula_, Mar 12 2008