login
A137254
Numbers n for which r(n) = 3 * S(n)/2, where r(n) = number of digits of n and S(n) = sum of digits of n; n in binary notation.
2
5, 6, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 287, 303, 311, 315, 317, 318, 335, 343, 347, 349, 350, 359, 363, 365, 366, 371, 373, 374, 377, 378, 380, 399, 407, 411, 413, 414, 423, 427, 429, 430, 435, 437, 438, 441, 442, 444, 455, 459, 461, 462, 467, 469, 470
OFFSET
1,1
COMMENTS
Integers n such that in Base 2, number of `1`'s = twice number of `0`'s. IntegerDigits[43,2]={1,0,1,0,1,1},IntegerDigits[60,2]={1,1,1,1,0,0},... - Vladimir Joseph Stephan Orlovsky, Jul 21 2009
MATHEMATICA
f0[n_]:=DigitCount[n, 2, 0]; f1[n_]:=DigitCount[n, 2, 1]; f[n_]:=f1[n]/f0[n]; lst={}; Do[If[f[n]==2, AppendTo[lst, n]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
Select[Range[500], DigitCount[#, 2, 1]==2*DigitCount[#, 2, 0]&] (* Harvey P. Dale, May 22 2013 *)
PROG
(PARI) is(n)=hammingweight(n)==2/3*#binary(n) \\ Charles R Greathouse IV, May 28 2013
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Ctibor O. Zizka, Mar 11 2008
STATUS
approved