The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137245 Decimal expansion of Sum_{p prime} 1/(p * log p). 14
 1, 6, 3, 6, 6, 1, 6, 3, 2, 3, 3, 5, 1, 2, 6, 0, 8, 6, 8, 5, 6, 9, 6, 5, 8, 0, 0, 3, 9, 2, 1, 8, 6, 3, 6, 7, 1, 1, 8, 1, 5, 9, 7, 0, 7, 6, 1, 3, 1, 2, 9, 3, 0, 5, 8, 6, 0, 0, 3, 0, 4, 9, 1, 9, 7, 8, 1, 3, 3, 9, 9, 7, 4, 4, 6, 7, 9, 4, 6, 9, 8, 6, 5, 4, 7, 0, 0, 4, 0, 3, 8, 5, 2, 5, 5, 8, 4, 7, 9, 8, 9, 8, 9, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sum_{p prime} 1/(p^s * log p) equals this value here if s=1, equals A221711 if s=2, 0.22120334039... if s=3. See arXiv:0811.4739. Erdős (1935) proved that for any sequence where no term divides another, the sum of 1/(x log x) is at most some constant C. He conjectures (1989) that C can be taken to be this constant 1.636..., that is, the primes maximize this sum. - Charles R Greathouse IV, Mar 26 2012 [The conjecture has been proved by Lichtman 2022. - Pontus von Brömssen, Jun 23 2022] Note that sum 1/(p * log p) is almost (a tiny bit less than) 1 + 2/Pi = 1+A060294 = 1.63661977236758... (Why is it so close?) - Daniel Forgues, Mar 26 2012 Sum 1/(p * log p) is quite close to sum 1/n^2 = Pi^2/6 = 1.644934066... (Cf. David C. Ullrich, "Re: What is Sum(1/p log p)?" for why this is so; mentions A115563.) - Daniel Forgues, Aug 13 2012 REFERENCES Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209. LINKS Karim Belabas and Henri Cohen, Computation of sum_{p prime} 1/(p^s log(p)), PARI/GP script, 2020. Henri Cohen, High-precision computation of Hardy-Littlewood constants, (1998). Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission] P. Erdős, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), pp. 126-128, [DOI]. P. Erdős, Some problems and results on combinatorial number theory, Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., 576, pp. 132-145, New York Acad. Sci., New York, 1989. Brady Haran and Jared Duker Lichtman, Primes and Primitive Sets, Numberphile video (2022). Jared Duker Lichtman, Almost primes and the Banks-Martin conjecture, arXiv:1909.00804 [math.NT], 2019. Jared Duker Lichtman, A proof of the Erdős primitive set conjecture, arXiv:2202.02384 [math.NT], 2022. Jared Duker Lichtman, Proving the Erdős Primitive Set Conjecture, Oxford Mathematics YouTube video, 2022. Jared Duker Lichtman, A proof of the Erdős primitive set conjecture, YouTube video from Combinatorial and additive number theory conference (CANT), 2022. R. J. Mathar, Twenty digits of some integrals of the prime zeta function, arXiv:0811.4739 [math.NT], 2008-2009, table in Section 2.4. David C. Ullrich, Re: What is Sum(1/p log p)?, posting in newsgroup sci.math.research, 11 Feb 2006. FORMULA Equals Sum_{n>=1} 1/(A000040(n)*log A000040(n)). EXAMPLE 1.63661632335... MATHEMATICA digits = 105; precision = digits + 10; tmax = 500; (* integrand considered negligible beyond tmax *) kmax = 500; (* f(k) considered negligible beyond kmax *) InLogZeta[k_] := NIntegrate[Log[Zeta[t]], {t, k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20]; f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/k^2)*InLogZeta[k]]]; s = 0; Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}]; RealDigits[s][][[1 ;; digits]] (* Jean-François Alcover, Feb 06 2021, updated Jun 22 2022 *) PROG (PARI) See Belabas, Cohen link. Run as SumEulerlog(1) after setting the required precision. (PARI) default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/k^2 * intnum(x=k, [, 1], log(zeta(x))); print(s)); \\ Vaclav Kotesovec, Jun 12 2022 CROSSREFS Cf. A000040, A060294, A221711 (p squared), A115563, A319231 (log squared), A319232 (p and log squared), A354952. Sequence in context: A176715 A229522 A227400 * A060294 A181171 A193025 Adjacent sequences:  A137242 A137243 A137244 * A137246 A137247 A137248 KEYWORD cons,nonn AUTHOR R. J. Mathar, Mar 09 2008 EXTENSIONS More terms from Hugo Pfoertner, Feb 01 2020 More terms from Vaclav Kotesovec, Jun 12 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 6 12:35 EDT 2022. Contains 357264 sequences. (Running on oeis4.)